


An Introduction to
Compiler Writing

J. S. Rohl
University of Manchester Institute of Science and Technology

Macdonald and Jane’s -+ London and
American Elsevier Inc. -+ New York



© J. S. Rohl 1975

Sole distributors for the United States and Dependencies and Canada:
American Elsevier Publishing Co. Inc., 52 Vanderbilt Avenue, New York,
N.Y. 10017

Sole distributors for the Continent of Europe excluding the British Isles and
Commonwealth and the Republic of Ireland:

Elsevier Publishing Company, P.O. Box 211, Jan Van Galenstraat 335,
Amsterdam, The Netherlands

Sole distributors for all remaining areas:
Macdonald and Jane’s, Macdonald & Co. (Publishers) Ltd.,
Paulton House, 8 Shepherdess Walk, London, NI7TLW

Macdonald ISBN 0 356 08173 7
American Elsevier ISBN 0 444 19523 8
Library of Congress Catalog Card No. 74 16914

All Rights Reserved. No part of this publication may be reproduced, stored

in a retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without prior permission of
the publishers.

Text set in 10/12 pt. Monotype Times New Roman, printed by letterpress and
bound in Great Britain at The Pitman Press, Bath



Preface

This is, as its title suggests, an introduction to compiler writing. It is
written in a narrative style. We start with a basic language and show
how to compile it; and then expand the language by degrees showing
how the compiler can be modified to accommodate these expansions.
Thus, the description of a technique might be enhanced from chapter
to chapter. Since the information is not collated (except through the
index) the book’s use as a work of reference is, to that extent,
limited.

Since it is an introductory book, the number of language facilities
that we consider is restricted. The basic language expands to about
the full power of Algol, but not to, say, Algol 68. We assume a
working knowledge of Algol and, in so far as Fortran is the classical
representative of the class of languages which can be implemented
with a static storage allocation scheme, we assume a knowledge of it,
too.

We are concerned with the broad principles rather than detailed
representation. Accordingly, language facilities described have
sometimes been modified to avoid some of the well-known minor
problems of implementation. We do not consider jumping out of
blocks, for example, or own arrays. The order code of the target
machine has been carefully chosen to reflect the structure of the
source language. It is, in fact, the order code of MUS5 (see ref. 0.1)
and this book might serve to illuminate the philosophy on which
the order code of that machine is based. Since the order code of
ICL’s New Range, the 2900 Series, derives from that of MUS it
will apply to that series as well, except that some concepts (in
particular the Boolean facilities) are not relevant.

All books reflect their author’s views on his subject. Three views
have shaped this book.

First, that computer science has become of age to the extent that
its structure as a discipline is now clearer.

There are areas such as program design, data structures and so on

vii



in which a coherent body of knowledge now exists. I have assumed
that readers of this book will be well versed in the program structures
of Algol (in particular the recursive calls of procedures and the
while clause) and in data structures (particularly binary and general
trees).

Second, and almost as a corollary, that the theory of grammars is a
subject in its own right rather than a part of compiler writing. The
compiler writer will see it as a tool, of course, in the same way as he
sees data structure techniques, and will use it as such. Most other
books on compiler writing treat the theory of grammars as central to
the whole subject. This is, perhaps, the major difference between this
book and those: here the subject is introduced at the point at which it
is relevant, views from both ends of the spectrum (the source-driven
precedence technique and the syntax-driven, top-down analysis
technique) are given, and references made to the theory for those
wishing to refine the techniques. If I had to put in one sentence what
I feel compiler writing is about, I would say that it is about the struc-
tures which have to be maintained by the compiler and the pro-
cedures by which they are created and transformed.

Third, that the compiler writer has an important role in the design
of computer systems as an interpreter, both of the users’ needs to the
machine designer, and of the machine’s capabilities to the language
designer. Consequently, throughout the book, I make references to
the curious constructions still existing in the languages in use today
and to the lines along which hardware might develop to make it more
amenable to the requirements of high-level languages.

There are a restricted set of references in this book. I have tried to
be selective, referring only to those papers and books that a student
might be expected to read. Such a choice is, of necessity, a personal
one. For those students who are fired with enthusiasm the references
themselves contain the further references.

This book has had a long gestation period. It started with some
post-graduate lectures I gave in 1967 in the University of Queensland
and I am grateful to Professor S. A. Prentice for giving me the
opportunity of developing my ideas of teaching the subject along
these lines. Since then, of course, they have been refined many times
in the course of presenting them to many sets of students, and I
should like to thank all those who, wittingly or unwittingly, have
helped me comb out a number of errors. In its draft form this book

viii



has been read by a number of people and I should like to record my
appreciation of all the comments, corrections and suggestions I have
received. I would particularly single out my research students,
Graham White and Alan Brook, and Professor Gordon Rose.

Finally, I should like to record my indebtedness to Hilary Mayor,
who, as Hilary Shaw, typed and retyped my many attempts to get
the early chapters to say what I wanted to say and who drew all the
diagrams in those chapters; and to Susan Green who typed subse-
quent chapters, drew the diagrams they contained and undertook the
quite substantial revisions of the whole book.

X



Contents

Preface
1 Introduction

2 A compiler for a basic language
2.1 The basic language
2.2 A compiler for this language
2.3 Read a line
2.4 Process a line
2.5 Modular hierarchical structure
2.6 Faults
2.7 Information needed by the compiler
2.8 Declarations
2.9 Assignments
2.10 Efficiency
2.11 Labels and go to statements
2.12 Conditional go to statements
2.13 Input and output

3 Multi-character identifiers and lexical analysis
3.1 Multi-character identifiers
3.2 Hashing
3.3 Lexical analysis
3.4 Lexical analysis of constants
3.5 Backtracking
3.6 Punching conventions
3.7 Comments and strings
3.8 Other actions
3.9 The relevance to Fortran

4 Expressions and syntactical analysis

4.1 Expressions
4.2 A revised over-all flow diagram

CO 00 Nl Lbhh W W =

11
13
18
21
26
29

30
30
35
36
4]
41
43
47
48
48

50

50
51

xi



xii

4.3
44
4.5
4.6
4.7
4.8
4.9

Equivalent simple assignments
Re-ordering simple assignments

A finally revised flow diagram
Re-ordering in Algol

Binary trees

Code generation from a binary tree
Allocation of temporary variables

4.10 Transformation of a binary tree
4.11 A precedence algorithm
4.12 Unary operators

Reverse Polish notation

5.1
52
5.3
54
5.5

5.6
5.7

Reverse Polish

Conversion to Polish notation

Code generation for a zero-address machine from
Reverse Polish

Code generation for a one-address machine from
Reverse Polish

Code generation for a one-address machine from
Reverse Polish allowing re-ordering

Re-ordering a Reverse Polish string

The relationship between binary trees and Reverse
Polish strings.

A general tree structure

6.1
6.2
6.3
6.4
6.5
6.6
6.7

N-ary trees

Creation of an n-ary tree

Code generation from an n-ary tree
Transformation of an n-ary tree
Unary operators

N-ary trees and Algol

An assessment of n-ary trees

Booleans and conditions

7.1
7.2
7.3
74
1.5

Boolean expressions
Internal representation

Code generation from a binary tree with no relations

Code generation from a binary tree with relations
Conditional statements

53
56
59
59
62
64
66
66
68
69

73

74
74

76

78

79
81

82

84

85
87
88
89
91
92
93

94
94
95
95
97

101



7.6
1.7
7.8
1.9
7.10

An alternative encoding

The conditional approach

An appraisal of the approaches

The conditional approach and Algol
Conditional expressions

8 Mixed expressions and assignments

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8

Explicit type conversion
Implicit type conversion
Constants

Assignments

Types of expression
Further types of variable
Multiple assignments

A comment on this chapter

9 Optimisation

9.1
9.2
9.3
9.4
9.5

9.6

9.7

9.8
9.9
9.10
9.11
9.12

9.13
9.14
9.15
9.16
9.17

Elimination of unnecessary store and load orders
Evaluation of constant expressions at compile time
Elimination of common sub-expressions

Are these simple optimisations worth it?
Remembering the contents of registers within
statements

Remembering the contents of registers across
statements

Common sub-expressions across consecutive
statements

Re-ordering statements

N-ary trees again

Loops

Optimisation over simple loops

Compound statements and optimisation over larger
loops

Is this more general optimisation worth it ?
Delaying the storage of registers

Recognition of special cases

Machine-dependent optimisation

The place of optimisation

103
106
112
113
114

117
117
120
122
122
124
125
127
129

130
131
132
135
141

143

144

144
145
147
150
151

152
155
156
157
158
161

xiii



10 Arrays

11

12

Xiv

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9
10.10

10.11
10.12

Static vectors

Checking vector accesses

Static matrices

Optimisation of matrix accesses
Checking matrix accesses

Dynamic vectors

Dynamic matrices

Iliffe vectors

Three and higher dimensional arrays
A comparison of Iliffe vectors and the
multiplication method

Storing a multiplication vector

A comment on this chapter

Block structure

11.1
11.2
11.3

11.4
11.5
11.6
11.7

Blocks

Blocks in a language with static storage allocation
Blocks in a language with dynamic storage
allocation

Storing temporary variables

Coalescing blocks A

Separating static from dynamic variables
Compile time considerations

Procedures

12.1
12.2
12.3
124

12.5

12.6
12.7
12.8
12.9

Procedure or subroutine structure

Compile time considerations

Run time considerations

Procedures in a language with static storage
allocation

Procedures in a language with dynamic storage
allocation

Parameters

Parameters called by value

Parameters called by reference

Optimisation of parameters called by reference

12.10 Parameters called by substitution

163

163
166
168
169
173
175
178
179
182

183
184
185

186

186
187

188
192
193
194
196

199

199
200
201

201

203
206
206
208
209
210



13

14

12.11 Optimisation of parameters called by substitution
12.12 Other types of parameter

12.13 Functions

12.14 Recursion

12.15 Some further compile time considerations

12.16 An alternative strategy

Full syntax analysis

13.1 Backus Naur Form

13.2 Syntax trees

13.3 A modified set of definitions

13.4 Processing syntax trees

13.5 An analysis or parsing algorithm
13.6 Representation of phrase definitions
13.7 Representation of the syntax tree
13.8 An analysis procedure

13.9 Merging alternatives

13.10 Phrase routines

13.11 Syntax analysis and lexical analysis
13.12 Syntax analysis and precedence
13.13 The theory of grammars

Fault monitoring

14.1 Compile time errors

14.2- Faults detected while converting to a standard
form

14.3 Faults detected during lexical analysis

14.4 Faults detected during syntactical analysis

14.5 Faults detected during semantic processing

14.6 Other information printed at compile time

14.7 The lay-out of the compile time monitor

14.83 Run time monitoring

14.9 Post-mortem dumps and stack interpretation

14.10 Fault recovery

14.11 Tracing

14.12 A comparison between stack interpretation and
tracing

14.13 When a program just gives the wrong results

14.14 The user’s options

214
215
217
218
220
221

224
224
225
226
229
229
231
232
235
237
238
240
240
241

243
244

246
248
250
251
252
253
254
255
258
258

259
259
260

XV



15 Compiling systems

16

17

Al

A2

Xvi

15.1
15.2
15.3
15.4
15.5
15.6
15.7
15.8
15.9

Semi-compiled format and relocatable binary
Libraries with a compile-and-go compiler
In-core batching compilers

Cafeteria systems

Multi-pass compilers

Interaction: re-entrant (or pure) code
Interaction: incremental compiling
Interpreters

The future

Compiler writing aids

16.1
16.2
16.3
16.4
16.5
16.6
16.7

Control structures in a compiler writing language
Data structures in a compiler writing language
Fault monitoring in a compiler writing language
Special procedures for compiler writing
Compiler target languages

Generators

Boot-strapping

Designing compilers

17.1
17.2
17.3

17.4
17.5
17.6

Choice of compiling system
Choice of compiler writing aids

Choice of mapping between source language and

object machine

Choice of algorithms and data structures
Encoding and testing the algorithms
The future

The basic language used in Chapter 2

Al.l1 A line-by-line definition
Al.2 A definition of a complete program

The order code of the object machine

A2.1 The arithmetic orders
A2.2 The Boolean orders

A2.3 The comparison orders

262

262
265
266
268
269
270
274
278
280

281

281
282
284
284
285
286
287

289

289
290

291
292
293
294

295

295
296

297

297
298
298



A2.4 The control orders 298

A2.5 The descriptor operations 299
A2.6 The orders concerned with SB and SF 299
A 3 Line reconstruction 300
References 303
Index 305

XVii



Introduction

What is a compiler ? Conceptually at least, a compiler is a program
just like any other program. If we consider Fig. 1.1 (i), a program is
something which reads in some data and produces some results.

A compiler is a program which takes as data the program being
compiled (called the source program), and produces as its results, an
equivalent program in binary machine code (called the object
program), as shown in Fig. 1.1 (ii). This object program is of course

) DATA RESULTS
e PROGRAM >
(if) SOURCE PROGRAM COMPILER OBJECT PROGRAM
: ————
(in, say, Algol) ’ (in binary machine code)
= e ] 5 e o
(iii)  SOURCE PROGRAM COMPILER H OBJECT T RESULTS
—_— MPILE T —_
PROGRAM ]
DATAY . oy o s e J

Fig. 1.1. The structure of (i) a program; (ii) a compiler;
(#ii) a compiler and its compiled program.

a program, so it then usually reads in some conventional data and
prints out some results, as shown in Fig. 1.1 (iii).

We have said that this is conceptually what happens, and in many
cases it is precisely what happens. This is the simplest form of
compiling system, called a compile-and-go system, and we will
assume it throughout the main part of this book. In Chapter 15,
however, we will consider other systems.

Most programs these days are written in a high-level language
such as Fortran, Algol, Cobol, PL/1 and so on. (Hence the need for

1



AN INTRODUCTION TO COMPILER WRITING

compilers.) The same is becoming true of compilers: sometimes
Fortran, Algol or PL/1, sometimes in languages specially designed
for the purpose. When we wish to illustrate some point we will use
Algol, augmented if necessary; in Chapter 16 we will discuss
the problem in more detail.



2

2.1

A compiler for a basic
language

Let us approach the basic problems of compiler writing by consider-
ing a very basic language and a compiler for it.

The basic language

Consider a very small sub-set of Algol which results from the follow-
ing restrictions:

(i) There are no blocks, compound statements or procedures.

(ii) Only onc ‘instruction’ is permitted per line.

(iii) Identiii 5 (including those for labels) consist of single
letters.

(iv) All real constants contain a decimal point; no integer constants
do.

(v) Arrays are real, and of one dimension only (they are vectors);
the lower bound is always 0, and the upper bound is always a
constant, as shown by the declaration:

array p[0:10]

Further, the bounds of each individual array must be given ex-
plicitly.

(vi) Expressions are very simple in that they contain only one or
two operands, that the operators available are 4+, —, *, [ (Where +
and — are always binary, never unary) and that both operands
(where there are two) must be of the same type. For example:

h*i
0
j+1
(vii) In an assignment statement the left-hand side variable must
be of the same type as the right-hand side expression.



AN INTRODUCTION TO COMPILER WRITING

(viii) The go to statement can refer only to a simple label as in:
go to /

There are no switches.
(ix) The only statement that can be made conditional is the go to
statement. For example:

if j # n then go to /

(x) The only form of Boolean expression is the relation between
two operands of the same type.

(xi) There are no built-in functions.

(xii) All programs end with a dummy statement.

These restrictions are designed to make the language as simple as
possible while still retaining the essential characteristics of a high-
level language.

To fix ideas, let us consider a program to calculate n integrals
using Simpson’s Rule:

J: f(x)dx ~
where & = (b — a)/2, fO = f(a), f1 =f( ),f2 = f(b).

The values of A, f0, f1 and f2 are given as data for each integral.
If we add some rudimentary input and output statements for
completeness we arrive at a program such as:

[f0 + 471 + £2]
a+b

(SRR

begin
real h, ¢, f, g, i;
integer j, n;
ji=0;
read »n;
I:read h, e, f, g;
| := 4-0*f;
=e+1i;
i+ g;
h*i;
1= i[3-0;
rint i;
ji=j+1
if j # n then go to /;
end

o — TR T TR PR



