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PREFACE

This text offers certain general methods of solving problems in elemen-
tary geometry and is designed for teachers of mathematics in secondary
schools and also for senior students.

The present text includes material that goes beyond the scope of mathe-
matics curricula for secondary schools (the use of complex numbers in
plane geometry, inversion, pencils of circles and others).

The book consists of five chapters. The first four chapters deal with the
application of vector algebra, analytic geometry, complex numbers and
the inversion transformation to geometric problems. Chapter V contains
a list of the basic definitions and formulas used in the first four chapters.
Before starting a new chapter, the reader is advised to refresh his memory
with the appropriate material of Chapter V. Some of the derivations of
formulas given in Chapter V are familiar to senior students of secondary
school. More detailed theoretical material can be found in the bibliography
at the end of the book.

I wish here to remark on a supplement to vector algebra that was brought
to my attention in 1930 by Professor Ya. S. Dubnov, my teacher at Moscow
State University. It is that vector algebra in the plane has not been deve-
loped to the point that vector algebra in space has, and in order to remedy
this situation in an oriented plane it is necessary to introduce the rotation
of a vector through an angle of /2 (designated [a]) and also a pseudo-
scalar (or cross) product a > b [or (a, b)] of a vector a by a vector b. Note
that the linear vector function Ax of a vector argument X possessing the
property that Ax | x for any vector x has the form 4x = A[x] (4 is an
arbitrary number) in the plane, and Ax = [a, x] (a is an arbitrary vector)
in space. The cross product of vectors in the plane and in space may be
defined as a polylinear scalar function (of two vectors in the plane and of
three vectors in space) which is antisymmetric with respect to any pair of
vectors — in the plane we have

A(xa y) = ——A(y, X);
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in space we have

Ax,y,2) = —A(y, X, z), A(X,y,2)= —A(z,Y, x),
Ax,y, z) = —A(X, 2, y)

— and is normed (that is, it becomes +1 for some base).
This product may be defined as the result of two operations (in the
plane and in space)

(a’ b) = [a] * b’ (as b’ C) = [a, b] - C.

Although a free vector in geometry constitutes the class of all equiva-
lent directed line segments, I will permit myself, in this book (in accord-
ance with a very solid tradition) to identify a vector and a directed line
segment as equal (as, for example, in arithmetic, where one regards as
equal the fractions p/q and np/nqg, where p, q, n are natural numbers).
For this reason, in this text, two directed line segments that are collinear,
have the same length, and are in the same direction will be termed equi-
valent or equal.

The idea of using complex numbers in plane geometry came to me in
connection with some very interesting lectures on the theory of analytic
functions delivered at Moscow University by Professor A. I. Markushe-
vich, and also with a book on that subject by Markushevich. Also, since
the 1940 s, papers have appeared regularly in mathematical journals in
many countries illustrating how the use of complex numbers in plane
geometry makes for rather simple solutions to complicated problems by
relating the solutions to basic geometric transformations that are nor-
mally studied in secondary school (motion, the similarity transformation,
circular transformations, including inversion).

A book by R. Deaux [2] appeared in France devoted specially to the
problems taken up in Chapter III of this book. Since this methodology
is not all represented in Soviet textbooks, I have given detailed explana-
tions and calculations of the procedures. In this text I have made use of
the work of R. Deaux, R. Blanchard, Gourmagschieg, V. Jebeau and
others.

I believe that the contents of Chapter III is added proof of how much
elementary mathematics loses if complex numbers are not brought into
the picture. A consideration of the most elementary functions of a complex
variable,

2= Pl d b 2 0), 2 =921 i be £ 0),
az +d cz+d
z' = az + b(a # 0), z' = az + b(a # 0),

embraces the isometric transformations of the first and second kind
(z’ =az +b, z’ = az + b, where |a| = 1), similarity transformations of
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the first and second kind (z' = az + b, z' = uz + b, a # 0) and circular
transformations (the case of a linear fractional function; in particular,
the inversion z’' = a/z).

Chapter IV gives a survery of the properties of inversion of a plane and
space and various applications (inversors, the geometry of Mascheroni,
and the mapping of regions under inversion). In particular, detailed con-
sideration is given to various stereographic projections of a sphere onto
a plane and the construction of conformal maps of a spectrum of meri-
dians and parallels of the sphere.

The final chapter, Chapter V, contains a list of basic definitions, for-
mulas and the bibliography. The bibliography contains books in which
the reader will find proofs of the formulas used in this text; they include
textbooks on vector algebra, analytic geometry, the theory of geometric
transformations, and the theory of functions of a complex variable.

The general methods for solving geometric problems described in this
text are closely interrelated: it will be recalled that vector algebra is close-
ly related with analytic geometry. The basic formulas used in Chapter III
are derived on the basis of facts taken from analytic geometry; the linear
fractional function of a complex variable contains within it the inversion
transformation; the inversion transformation can be reliably studied by
the methods of analytic geometry, and so forth.

I would like to point out that the drawing on the cover of the book
(it is the same as that in Fig. 114) is a copy of a photograph of a model
that I constructed to illustrate the stereographic projection of a sphere
onto a plane under which the parallels and meridians pass into a hyper-
bolic pencil of circles and an associated elliptical pencil of circles. Figures
107 and 108 were done in the same manner.

During the writing of this text I received valuable advice from Professor
V. A. Ilin and Corresponding Member of the USSR Academy of Sciences
S. V. Yablonsky, to whom I express my deep gratitude. Very profound
and valuable advice was obtained from the reviewer of the Nauka Publish-
ing House; practically all his suggestions were incorporated in the final
version of the manuscript.

It goes without saying that the general methods of solving elementary-
geometry problems given in this text do not exhaust the range of such
methods. For instance, mention may be made of a very powerful analytic
method for applying trilinear coordinates in the plane, and tetrahedral
coordinates in space (the trilinear coordinates of a point on a projective-Eu-
clidean plane are the projective coordinates of proper points of such a
plane, provided that all four fundamental points of the projective system
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of coordinates are also proper points; the same goes for space as well).
The limited scope of this book did not allow for the inclusion of that
method. And there are of course other general methods, which, unfor-
tunately, have not been discussed in our textbooks or teaching literature
(for example, synthetic methods of solving problems with the use of iso-
metric, similarity, affineand projective transformations). However, I am

sure that this situation will be remedied in time.
P. S. Modenov

The present edition was prepared after the author died. The material
of the book has been re-examined and brought into accord with generally
accepted terminology and notation. A small number of inaccuracies in
the Russian edition have been corrected and the bibliography has been

expanded.



Chapter 1

* VECTOR ALGEBRA

Sec. 1. Vectors in the plane (solved problems)

Problem 1. Given the angles 4, B, C of AABC. Find /¢ =/ BAM,
where M is the midpoint of BC.

Solution.
s s
AMT(AB + AC)
and so
cos ¢ = AB(AB“{"AC) . ABZ _+_ AB'AC
TS — —> 2 =
|AB| |AB + AC,| CVc -+ b% 4 2bccos A

e+ bcos A
V6% + ¢ + 2bccos A

9

and since b : ¢ = sin B:sin C, it follows that

- sin C -} sin B sin 4

B J/sin?B -+ sin? C -+ 2 sin B sin Ccos 4
Problem 2. Given the angles 4, B, C of AABC.

Let M be the midpoint of segment AB, and let D be the foot of the bisector
of / C. Find the ratio (CDM): (ABC) and also ¢ = ./ DCM.

Solution.

cos @

— —>
where a = CB, b = CA. Consequently
— —>
DMy = L (D, cm)— @ b3 ath)
2 4(a + b)
_(b—a)(a, b)  (a—b)(4BC)
4a + b) 2(a + b)

whence
(CDN) _ a—b
(ABC) 2(a + b)
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which can also be written as .
(CDM)  sinA —sinB

(ABC) 2(sin A + sinB) -

—= —
Furthermore, since CD1{(ab + ba), CM1{(a + b), it follows that
(ab + ba) (a + b)
|ab +ba||a+ b
ab® - ba® + ab(a + b) cos C
- V2a%® + 2a%? cos C |/a* + b* + 2ab cos C
(a + b) cos (C/2) _ (sin A - sin B) cos (C/2)
- Va2 + b2 + 2abcos C 31;‘A ~+ sin%? B + 2 sin A4 sin B cos C
(ab +ba, a+b) (b —a)(a, b)
|ab - ba| |a - b] ab l/2(l + cosC) l/a- + b2 2 ab cos C
(sin B — sin A) sin (C/2)
- VsinzA +sin® B 4 2 sin A sin Bcos C )

cos @ =

sin ¢ =

Problem 3. Given the interior angles 4, B, C of AABC; M is the mid-
point of segment BC, N is the foot of the altitude dropped from point C
to side AB, and O is the point of intersection of the straight lines AM and

CN. Find cos ¢, where ¢ = / AOC.
Solut:on Orientate the plane with the base a, b, wherc a= CB b= CA

Then CN 11 [a — b]. Indeed, the vector [a — b] = [BA] is perpendicular
to the straight line 4B and forms acute angles with the vectors a and b

since
[a —bla= —[b]a=(a, b) >0,

[a— b]b=[a]b=(a, b) > 0.
H a
Furthermore, AM 11 c b1Ta — 2b.

. ) — —>
The desired /¢ is the angle between the vectors AM and CN;
consequently,

oD [a — b] (a — 2b) _ —2[a]b — [b]a _
[[a — B]| |]a — 2b| |a — b| |a — 2b|
_—2@b+@b (b

|a — bl [a — 2b| |a — b| |a — 2b|
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. ab sin C
" Va® + b — 2abcos C Ja® + 4b® — 4ab cos C
o sin-4-sin B sin C
- [sin%4 +sin2B”— 2sin A sin Bcos C/sin24 :{jii}siﬂzﬁ;—?ls'm_AAsintho?é .

— —> —
Problem 4. Given vectors a= CB, b = CA. Find the vector x = CO,

where O is the centre of a circle circumscribed about A ABC.
Solution. From the relations

x? = (a—x)* = (b — x)*
we find
xa = a?/2, xb = b%2

and, hence, by the Gibbs formula
a® b2
x = xa-a¥ 4 xb-b* = — a* - — b*

where a*, b* is the reciprocal (or dual) basis of the basis a, b:
IR U IR O
(b, a) (a, b)
Thus,
2 — 2
X b*a] —a [b]_
(a, b)
Remark. If we take x in the form x = Aa +- ub, then from the relations
xa = 4%/2, xb = b?2

we obtain
Aa* + p-ab = a%/2,
A-ab 4 pb* = b?/2,
whence
_ a®h* — b*-ab _ a®h® — a*-ab
T 2@ — @by | 2@ — (ab))
and so

_ 1 @b —bab 1 g% —aab

2 @b — (ab) 2 a%® — (ab)?

Problem 5. Given the cross products (a, x) = p, (b, x) = ¢q of vector x
into the noncollinear vectors a and b. Express the vector x in terms of the
vectors a, b and the numbers p, q.
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Solution. Let

b o a)
. a)

@ b
be the reciprocal basis of a, b. Then

P L R

a* —

(b, a)’ (a, b)’
_bx) @, 9 . P _Pb—aga
(b,a)  (a,b)  (b,a)  (ab) (a, b)

Problem 6. Two forces F, = {2,3} and F, = {4, 1} are specified rela-
tive to a general Cartesian system of coordinates. Their points of appli-
cation are, respectively, 4 = (1,1) and B = (2, 4). Find the coordinates
of the resultant and the equation of the straight line / containing it.

Solution. The coordinates of the resultant F are 6 and 4. Now let
M(x, y) be an arbitrary point of /. Then the moment of the resultant about
point M is equal to zero. This moment is equal to the sum of the moments

— e
(MA, F,)) and (MB, F,) of component forces (the cross product of vectors
is distributive).

o — . —> .
Since MA ={l —x, 1 —y}, MB= {2 — x, 4 — y}, it follows that

=<3 l=x2f =2 12— x4
(MA,F,) = |z | , (MB,F)—Jgl® %
|[1—»3 4—y1

and, hence, the equation of the straight line / is

[1 —x 2] 2—x4
|+]

fl—y3|14—ylt:0

or
4x — 6y + 13 = 0.

Sec. 2. Vectors in space (solved problems)

Problem 1. The plane angles of a trihedral angle OABC are a = / BOC,
b=/ COA, c = /AOB. The interior dihedral angles of the given tri-
hedral angle are:

A = B(OA)C, B = C(OB)A, C — A(OC)B*

A trihedral angle OA4*B*C* that is the reciprocal of the trihedral angle
OABC is a trihedral angle constructed in the following manner: ray OA4*

* The symbol B(OA)C is used to denote a dihedral angle with edge OA, in the half-
planes of which are points B and C.
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is perpendicular to the rays OB and OC and forms an acute angle with
ray OA. The rays OB* and OC* are constructed in similar fashion.

Let a*, b*, ¢* be the plane angles of the trihedral angle OA*B*C* and
let A*, B*, C*, be its interior dihedral angles.

1°. Knowing, a, b, ¢, find cos A4, cos B, cos C.

2°. Prove that a* =n — A, b* =n — B, ¢*=n — C.

3°. Prove that A* —=n —a, B¥=n—b, C* =1 —c.

4°. Knowing A, B, C, find cos a, cos b, cos c.

5°. Prove that

sin A smB sinC A
‘sina  sinb  sinc smzismlr)smc
where
1 cos b cos c|\'?
4=1lcosb 1 cosa

== |
cosccosa 1 |

— J1 +2cosacosh cosc — cos*a — cos®h — cos*c

(this relation is called the theorem of sines for a trihedral angle OABC)Y,
6°. Prove that the sine theorem for the trihedral angle OABC (see
item 5°) may be written in the form
sin A4 sin B sin C a*

sin a sin b sin ¢ A

where

A* = Vl -+ 2 cos a* cos b* cos ¢c* — cos? a* — cos® b* — cos? ¢*

=1 — 2 cos 4 cos Bcos C — cost A — cos? B — cos? C.
— ——
Solution. 1°. Let e,, e,, e; be the direction vectors of the rays OA4, OB,

—> — — —>
OC (e, 11 04, e, 110B, €;110C). Then the vectors e!, e e* of the reci-

—
procal basis of the basis e,, e,, €; are the direction vectors of the rays OA4*,
—_— —> )

OB*, OC*. We assume the vectors e, e,, e; to be unit vectors and lay them
—

off from point O; then their endpoints E;, E,, E; will lie on the ray OA
— —>
OB, OC respectively. Through O draw a plane = perpcndlcular to the ray OC

Let EY and E? be orthogonal projections of the points E; and E, on the
plane n. Then C = A(OC)B = / E} OEJ. Consider the vectors

— —
e} = OFEY, e} = OE).

1) Or for a spherical triangle cut out of a sphere with centre O by a trihedral angle.
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We have

el =e, + le;, €)= e, J pue,.
Forming the scalar product of both sides of each of these relations by
the vector e;, we obtain

O=cosb+4, O0=cosa+ u,
so that

el =e —e;cosh, e =e,—e;cosa
and consequently
e)-ed (e; — e;cos b) (e, — e; cos a)

cos C = — ‘ ==
e 2| (e, — e;cos b)? |/ (e, — e, cos a)?

cosc —cosbhcosa—cosacoshb J-cosbcosa
V1 —2cos®h + cos?h |1 — 2 cos%a + cos®a
cos ¢ — cosacosb

sin a sin b

In similar fashion we calculate cos 4 and cos B. Thus,
cosa — cos b cos ¢

cos 4 = - - s
sin b sin ¢
cos b — cos ¢ cos a
cos B = - -
sin ¢ sin a
cos ¢ — cosacosbh
cos C =

sin a sin b
2°. The formulas obtained in item 1° can be rewritten thus:

— [elezl'[eleal_
I[e;e.] I [e,e5]]

B — [e?.el]l' [ese;] ,
I[ese,]! ‘ [ese,]|

_ [ese,] [ege,] .
I[ese,]l|[eses]|

Note that in this notation the vectors e, e,, e; need not necessarily be
regarded as unit vectors because when ey, e,, e; are replaced respectively
by Je,, re,, ve;, where 4 >0, u >0, v > 0, the right-hand members

of these relations remain unchanged. Thus, e, e,, e; may be regarded as
. —_———
any direction vectors of the rays 04, OB, OC.

cos A



