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Preface

The second Workshop on Human and Machine Vision was held in Montreal,
Canada on August 1-3, 1984, in conjunction with the International Conference
on Pattern Recognition. This book contains eleven of the papers presented at the
Workshop, together with three other papers (by M. Leyton, B. Smith, and
G. Sperling) on related themes.

The Proceedings of the First Workshop, held in Denver, Colorado in 1980, were
published in book form by Academic Press in 1983 (J. Beck, B. Hope, and A.
Rosenfeld, eds., Human and Machine Vision.) The papers in the present volume first
appeared in the August, September, and October 1985 issues of the journal Computer
Vision, Graphics and Image Processing; they are collected here in book form to make
them more widely available to students and researchers in both fields
— visual perception and computer vision.

The workshops, and the publications resulting from them, serve an important pur-
pose in enhancing communications between the two fields. Both groups can benefit
substantially from exchanges of ideas. It is planned to continue to hold such work-
shops on a regular basis.

Azriel Rosenfeld
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Perception of Transparency in Man and Machine*

JacoB BEck
University of Oregon, Eugene, Oregon 97403
Received October 31, 1984

The different tactics employed by human and machine vision systems in judging trans-
parency are compared. Instead of luminance or reflectance (relative luminance), the human
visual system uses lightness, a nonlinear function of reflectance, to estimate transparency. The
representation of intensity information in terms of lightness restricts the operations that can be
applied, and does not permit solving the equations describing the occurrence of transparency.
Instead, the human visual system uses algorithms based on simple order and magnitude
relations. One consequence of the human visual system not using a mathematically correct
procedure is the occurrence of nonveridical perceptions of transparency. A second consequence
is that the human visual system is not able to make accurate judgments of the degree of
transparency. Figural cues are also important in the human perception of transparency. The
tendency for the human visual system to see a simple organization leads to the perception of
transparency even when the intensity pattern indicates transparency to be physically impossi-
ble. In contrast, given the luminances or reflectances, a machine vision system can apply the
relevant equations for additive and subtractive color mixture to give veridical and quantita-
tively correct judgments of transparency. © 1985 Academic Press, Inc

1. INTRODUCTION

This paper compares how a person judges transparency with how a machine
Jjudges transparency when programmed not to simulate human perception but to
estimate transparency veridically. The case dealt with is of a diffusely reflecting
achromatic object viewed in neutral illumination through a transparent medium that
is nonselective for wavelength.

Transparency arises physically in two ways. Transparency can occur in looking
through a fine wire mesh screen. If a person is far enough so that his eyes fail to
accommodate for the wire mesh, the light from the wire mesh and from the holes
blur on the retina. The retinal stimulus is a weighted average of the light intensity
reflected from the wire mesh of the screen and the light transmitted by the holes in
the screen from the object. Transparency occurring in this way is described as
occurring through additive color mixture. Transparency also occurs when one looks
through a transparent medium, such as a filter. When an object is viewed through a
filter, part of the light is absorbed by the filter, and part of the light is transmitted by
the filter, reflected by the object, and retransmitted by the filter. There are multiple
reflections between the object and the filter before a ray emerges. The retinal
stimulus is the result of the light reflected by the object and transmitted by the filter
plus the surface reflectance from the filter. Transparency occurring in this way is
described as occurring through subtractive color mixture.

*The writing of this paper was supported by AFOSR Contract F49620-83-C-0093 to the University of
Oregon.
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2 JACOB BECK

2. ADDITIVE COLOR MIXTURE

Metelli [1, 2] has proposed a model for the perception of transparency based on
additive color mixture. Additive color mixture occurs when a device with open and
closed sectors, called an episcotister, rotates rapidly in front of surfaces. Figure 1
depicts the retinal stimulus resulting when an episcotister rotates in front of surfaces
A and B. Rotating the episcotister rapidly produces the perception of a transparent
color (regions d and c) lying in front of surfaces 4 and B. The apparent reflectances
of regions d and c is a weighted average, sometimes called Talbot’s Law, of the light
reflected from the background surfaces 4 and B and from the blades of the
episcotister e. The apparent reflectances of regions 4 and c are equal to

d

c

aa +(1 — a)e (1)
ab+(1 — a)e (2)

where a is the proportion of light reflected from surface A (corresponding to the
areal fraction occupied by the open sectors of the episcotister), 1 — a is the
proportion of light reflected from the blades of the episcotister (corresponding to
the areal fraction occupied by the blade of the episcotister), a is the reflectance of
surface 4, b is the reflectance of surface B, and e is the reflectance of the
episcotister blades.

The values of a, b, ¢, and 4 are given by the retinal stimulus and the visual
system needs to solve for a and e. Solving Eq. (1) and (2) for a and e yields

a=(d—c)/(a—b) (3)
e=(ac—bd)/(a+c)—(b+d). (4)

Alpha is the proportion of the apparent reflectances of 4 and ¢ determined by the
reflectances @ and b and is an index of transparency. When the apparent reflectance
(or luminance) of region 4 equals the apparent reflectance (or luminance) of region
¢, a = 0 and the overlying surface composed of regions d and c is opaque. When
the difference in apparent reflectance (or luminance) d — ¢ equals the difference in
apparent reflectance (luminance) a — b, the overlying surface composed of regions d

FIG. 1. The retinal stimulus resulting from an episcotister rotating in front of two surfaces differing in
reflectance. Capital letters 4 and B indicate the background surfaces. Lowercase letters indicate regions
of differing intensity.
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and c is perfectly transparent. Certain constraints follow from the physics of the
situation. Since a is restricted to values between 0 and 1, Eq. (3) implies (i) if a > b,
then d > ¢ and vice versa if a < b, and (ii) the absolute difference |a — b| must be
greater than the absolute difference |d — c|. Constraint (i) is a restriction on the
order of the intensities and ensures that « is positive. Constraint (ii) is a restriction
on the magnitudes of the intensities and ensures that « is less than 1. Since e is also
restricted to values greater than or equal to 0 and less than or equal to 1, order and
magnitude constraints can also be derived from Eq. (4). Eq. (4) implies (iii) if
(a + ¢)> (b + d) then ac > bd and vice versa if (a + ¢) < (b + d), and (iv) the
absolute difference |(a + ¢) — (b + d)| must be greater than the absolute difference
|ac — bd|. Constraint (iii) ensures that e is nonnegative, and constraint (iv) ensures
that e is less than 1. The four constraints are independent. Numerical values can be
assigned to the reflectances a, b, ¢, and d in Egs. (3) and (4) that satisfy three of the
constraints but not the fourth.

Beck et al. [3] investigated how violations of constraints (i) through (iv) affect the
perception of transparency. Figure 2a depicts the stimuli used. Capital letters
identify surfaces and lowercase letters regions of differing reflectance. The stimuli
were computer generated pictures of two overlapping squares, a top and bottom
square on a larger background surface. Figure 2b shows a stimulus satisfying
constraints (i) through (iv). The bottom square can be seen as transparent and
overlying the top square and the background.

Metelli [1, 2] showed that violations of either constraints (i) or (ii) adversely affect
the perception of transparency. Beck er al. [3] found that the perception of
transparency varied inversely with the salience with which constraints (i) or (ii) are
violated. The perception of transparency did not occur when either constraint (i) or
constraint (ii) were violated strongly. Figure 3a shows a stimulus which strongly
violates the order relation of constraint (i). The reflectance of region a is less than

(a) (b)

FIG. 2. (a) Stimulus configuration. Capital letters indicate the surfaces depicted. Lowercase letters
indicate regions of differing intensity. (b) Stimulus satisfying constraints (i) through (iv).



- JACOB BECK

|

(@) (b)

F1G. 3. (a) Stimulus strongly violating constraint (i); (b) stimulus strongly violating constraint (ii).

that of region b, but the reflectance of region d which overlies a is greater than that
of region ¢ which overlies b. Figure 3b shows a stimulus which strongly violates the
magnitude relation of constraint (ii). The reflectance difference between a and b is
contained within the reflectance difference between ¢ and 4. Metelli did not
investigate the effect of violating constraints (iii) and (iv) on transparency. Beck
et al. [3] have shown that violations of constraints (iii) and (iv) do not adversely
affect the perception of transparency. This has important consequences for the
perception of transparency. It makes possible the nonveridical perception of trans-
parency. That is, a pattern of intensities which physically cannot occur in an actual
case of transparency will be seen as transparent. Before pursuing this further, I will
turn to another question first.

3. SUBTRACTIVE COLOR MIXTURE

The perception of transparency often occurs in terms of subtractive color mixture
rather than in terms of additive color mixture. Constraints (i) and (ii) were derived
from a model which assumes additive color mixture. The question can be raised:
Why do constraints (i) and (ii) predict the perception of transparency as well as they
do since they appear to be ecologically unrepresentative?

The physical situation is depicted in Fig. 4a. Figure 4b illustrates the multiple
reflections and transmittances that occur. Light is in part reflected from the front
surface of the filter, and in part transmitted by the filter and reflected from the
opaque surface behind the filter; the reflected light is in part transmitted and in part
reflected back and so on. In Fig. 4, a is the reflectance of surface A4, b is the
reflectance of surface B, f is the reflectance of the filter F, and 1 is the transmittance
of the filter. The apparent reflectances of regions d and ¢ are equal to

d=f+(t’a)/(1 - fa) (5)
c=f+(’)/(1 - fb). (6)

The values of a, b, c, and d are given by the retinal stimulus and the visual system
needs to solve for ¢ and f.
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c AN/
'/\ \ \ \ \

d F l+ta+taf+lal+.

(a) (b)

F1G. 4. (a) Illustration of subtractive color mixture occurring with a filter. Capital letters A, B, and F
indicate the background surfaces and the filter. Lowercase letters indicate regions of differing reflectance.
(b) Illustration of the pattern of reflectance—a is the reflectance of surface A4, f is the reflectance, and ¢
the transmittance of filter F.

Solving Egs. (5) and (6) for ¢ and f yields

t=\/(c—bcd+bdz—d)(b—a—abc+a2c) 7)
(b — a + abd — abc)’

(bd — ac)
(b+ abd) —(a + abc) (8)

Order and magnitude constraints for the perception of transparency with subtrac-
tive color mixture can be derived from Egs. (7) and (8). Since the perception of
transparency occurs when ¢ is restricted to values between 0 and 1, Eq. (7) implies:
(V) (¢ — bed + bd?* — d)(b — a — abc + a*) > 0 and (vi) (b — a + abd — abc)? >
(¢ — bed + bd? — d)(b — a — abc + a’c). Constraint (v) ensures that 7 is positive
and constraint (vi) that it is less than 1. Since the reflectance of the filter, f, is also
restricted to values greater than or equal to 0 and less than 1, Eq. (8) implies: (vii) if
bd > ac, then b + abd > a + abc and vice versa if bd < ac, and (viii) the absolute
difference |b + abd — a + abc| must be greater than the absolute difference
|bd — ac|. Constraint (vii) ensures that f is positive and constraint (viii) ensures that
f is less than 1. An additional constraint is that ¢ + f must be less than or equal
to 1.

What is the relationship between the equations derived from the episcotister and
filter models? Equations (1) and (2) are clearly not equal to Egs. (5) and (6). The
order and magnitude constraints defining the boundary conditions for solutions of
the two sets of equations, however, appear to be closely related. Equations (5) and
(6) of the filter model imply constraints (i) and (ii) derived from Eq. (3) of the
episcotister model, and Egs. (1) and (2) of the episcotister model imply constraints
(v) and (vi) derived from Eq. (7) of the filter model. Although we have not been able
to demonstrate it mathematically, a computer search of the solutions to Egs. (5) and
(6) of the filter model has failed to find any solutions that violate constraints (iii) and
(iv) derived from Eq. (4). Similarly, a computer search of the solutions to Egs. (1)
and (2) of the episcotister model has failed to find any solutions that violate
constraints (vii) and (viii) derived from Eq. (8) of the filter model. The variables were
incremented by 0.02 within the bounds for each set of equations, and the calcula-

f=
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tions were carried out to four decimal places. Thus, transparency with subtractive color
mixture entails the computationally simpler constraints (i) through (iv) derived from the
equations for additive color mixture. Judgments of the degree of transparency based on Eq.
(3) will not be quantitatively correct with subtractive color mixture. However, this is not
important since, as will be shown, humans are not generally able to make quantitatively
accurate judgments of transparency.

Constraints (i) and (ii) are ecologically valid indicators of transparency because
the order and difference relations embodied by them are true for both additive and
subtractive color mixture. If we translate constraints (i) and (ii) into words, one can
see intuitively why they hold. Constraint (i) says: No matter how transparency is
produced, the overlaying of a transparent surface cannot change the order of the
lightness values. If in Fig. 2a region a is lighter than region b, then the area
overlying region a, region d, must be lighter than the area overlying region b, region
c. Constraint (ii) says: When lightness values are reduced by overlaying a trans-
parent surface, the lightness difference within the transparent area (regions 4 and c)
must be less than the lightness difference outside of the transparent area (regions a
and b). The brain has internalized constraints (i) and (ii) for inferring transparency
on the basis of the physical causes of transparency. If constraints (i) or (ii) are
violated, the change in intensities in a pattern are not ascribed to transparency.
Constraints (iii) and (iv) do not have a simple interpretation in terms of lightness
and the visual system does not use them in judging transparency.

4. NONVERIDICAL PERCEPTION OF TRANSPARENCY

What are the consequences of the visual system not being sensitive to violations of
constraints (iii) and (iv)? Equation (3) gives the degree of transparency for additive
color mixture when Eq. (4) is satisfied. That is, when the values a, b, ¢, and d are
such that constraints (i) through (iv) are satisfied. Since « and e in a physical
instance of transparency are less than or equal to 1, constraints (i) through (iv) are
automatically satisfied. However, since the visual system is not sensitive to violations
of constraints (iii) and (iv), it is possible to choose reflectance values which produce
a perception of transparency but which physically is impossible. If in Fig. 2a the
reflectance of region a is 0.57, of region b 0.47, of region ¢ 0.24 and of region d
0.33, constraints (i) and (ii) are satisfied (a = 0.90), while constraints (iii) and (iv)
are not (e = —1.83). Though constraints (iii) and (iv) are not satisfied, the bottom
square was readily seen as transparent [3]. Substituting the values for a, b, ¢, and d
in Eq. (3) gives a predicted transparency of 0.90. The mean of subjects’ judgments of
transparency was 0.46. The reason for the discrepancy between subjects’ estimates of
transparency and the predicted transparency from Eq. (3) is easily seen. Though the
difference between reflectances d and ¢ (0.90) is close to the difference between
reflectances a and b (0.10) giving a transparency estimate of (0.90), the reflectance
of region 4 (0.33) is not similar to the reflectance of region a (0.57) and the
reflectance of region ¢ (0.24) is not similar to the reflectance of region b (0.47). This
can occur because constraints (iii) and (iv) are not satisfied. In a real physical
instance of transparency, where constraints (iii) and (iv) are not violated, this would
not be possible. When the difference between the reflectances d and ¢ (d — ¢)
approaches the difference between the reflectances a and b (a — b), then the
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reflectance of region d approaches the reflectance of region a, and the reflectance of
region ¢ approaches the reflectance of region b. Physically, Eq. (3) both sets
conditions through constraints (i) and (ii) for the occurrence of transparency and
tells how transparent a surface is with additive color mixture. Psychologically, Eq.
(3) sets conditions through constraints (i) and (ii) on whether the perception of
transparency occurs, but does not always accurately indicate how transparent a
surface is seen to be. As in the example just given, to suppose that the visual system
always uses Eq. (3) without modification to determine the degree of transparency
can lead to an absurdity. Two questions need to be answered: Why is the human
visual system not sensitive to violations of constraints (iii) and (iv)? How does the
human visual system judge the degree of transparency?

5. REFLECTANCE VS LIGHTNESS

To answer these questions, we have to deal first with another question. Metelli’s
Eq. (3) describing the conditions for the perception of transparency assumes that
perceived transparency is determined by reflectance values. Reflectances are physical
values and not psychological values. The psychological dimension corresponding to
reflectance is lightness. Lightness is the dimension of sensory experience which may
be described as going from white through gray to black as reflectance goes from 100
to 0%. Physical differences are not the same as psychological differences. Several
equations have been proposed as approximate expressions of the relation between
lightness and reflectance (or relative luminance). For example, lightness has been
proposed to grow as a logarithmic function of reflectance, and as a linear function of
the cube root of reflectance. A minimal condition is that lightness is a negatively
accelerated monotonic function of reflectance. Figure 5 illustrates such a relation-
ship. Lightness on the y axis is related by a negatively accelerated function to
reflectance on the x axis. A monotonic transformation preserves order. Thus,
constraint (i) is satisfied in terms of lightness if it is satisfied in terms of reflectance.
The satisfaction of constraint (ii), which involves differences, depends on particular
values. Constraint (ii) can be satisfied in terms of reflectance values, but not in terms
of lightness values and vice versa. For example, consider the absolute differences
|la — b| and |d — c|in Fig. 5. In terms of reflectance, the difference |a — b| is greater
than the difference |d — c| satisfying constraint (ii). In terms of lightness, the
difference |a’ — b’|is smaller than the difference |d’ — ¢’| violating constraint (ii).

B

1 1 1 |
d c a b
®
F1G. 5. Tllustration of the relationship between lightness (') and reflectance (9).
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The perception of transparency depends on checking whether constraints (i) and
(i) are satisfied. What is the nature of the representation on which this checking is
done? Is it in terms of reflectance values or in terms of lightness values? Beck et al.
[3] have shown that the stimulus representation for transparency judgments is, as
might be expected, in terms of lightness values and not reflectance values. Why
constraints (i) and (ii) and not (iii) and (iv) are psychologically relevant can now be
understood. The constancy of lightness in a scene with an overall change in the
illumination keeps the ratios of intensities in the scene the same. Thus it is important
for the visual system to encode information about the ratios of intensities. If the
sensory transformation is approximately logarithmic, this means that the visual
system has to encode information about sensory differences. That is, in order to
determine whether intensity ratios are the same, the visual system has evolved
mechanisms for comparing lightness differences. The order of lightness values, their
differences, and the relative sizes of lightness differences are encoded by the visual
system because of their ecological importance. The visual system is thus equipped
for determining whether constraints (i) and (ii) are satisfied. Constraints (iii) and (iv)
involve operations of addition and multiplication. What is the sum of a light gray
and a medium gray or the product of a light gray and a medium gray seems like a
nonsensical question. It is an unnatural psychological thing to take sums and
products of lightness values. They are not intuitively interpretable, I believe, because
there is no adaptive need for the visual system to judge sums and products of
lightnesses. Applying constraints (iii) and (iv) to lightness values is not possible
because there has been no ecological reason for developing this ability.

6. PERCEPTION OF THE DEGREE OF TRANSPARENCY

What determines the perception of transparency? One possibility is that substitut-
ing lightness values for reflectances in Eq. (3) correctly predicts the perceived degree
of transparency. The argument for this is that the estimate of transparency is based
on the reduction of apparent contrast. The perception of the degree of transparency
is assumed to be a function of the similarity of the lightnesses in regions d and ¢
relative to the similarity of the lightnesses in regions a and b. If the lightnesses of
regions d and c are equal, that is, if their contrast is zero, then the degree of
perceived transparency is zero. As the lightness difference between regions 4 and ¢
approaches the lightness difference between regions a and b, the perceived degree of
transparency goes to 100%.! This equation, however, cannot be correct without
further restriction. In Fig. 6b, the lightness difference between d and ¢ is nearly
equal to that between a and b. Substituting subjects’ estimates of lightness values in
Eq. (3) gives a predicted transparency of 0.96 when the rectangle is seen as
transparent and overlying the square [3]. A transparency of 0.96 implies that the
lightnesses of regions d and a should be similar, and the lightnesses of regions ¢ and
b should be similar. This is clearly not the case. The mean of subjects’ transparency
estimates was 0.38 [3]. Just as with reflectances, substituting lightness values in Eq.
(3) can lead to an incorrect prediction of transparency.

Figure 6b does not correspond to a physically possible instance of transparency.
In an actual physical instance of transparency, if the reflectance difference d — c is

! Transparency judgments based on Eq. (3) and on lightness, of course, will not be quantitatively correct
for either additive or subtractive color mixture.
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(2) (b)

FIG. 6. (a) Stimulus configuration. Capital letters indicate the surfaces depicted. Lowercase letters
indicate regions of differing intensity. (b) Stimulus violating constraint (iii).

close to the reflectance difference a — b indicating high transparency, then the
reflectance of region d would approach the reflectance of region a, and the
reflectance of region ¢ would approach the reflectance of region b. If the reflectances
of regions d and a and of ¢ and b approach each other, then the lightnesses of
regions d and ¢ would approach the lightnesses of regions a and b. The discrepancy
between the predicted transparency of 0.96 and subjects’ mean transparency judg-
ment of 0.38 appears to be based on the fact that the lightness values of regions d
and ¢ differ from the lightness values of regions a and b. This occurs because the
stimulus violates constraint (iii). One possibility is that in an actual instance of
transparency where constraints (i) through (iv) are satisfied, perceived transparency
is based on substituting lightness values in Eq. (3). That is, the perception of the
degree of transparency is a function of the lightnesses of regions d and c relative to
regions a and b. Only if application of Eq. (3) leads to contradiction, as it can in
nonveridical instances of transparency, is the estimate modified. If Eq. (3) results in
a high transparency (e.g., greater than 80 or 90%) and the lightnesses of regions d
and a, and ¢ and b are not similar (as they should be with high transparency), the
estimate of transparency is adjusted downward. This is not a rational mathematical
adjustment. The human visual system, when presented with conflicting information,
produces a compromise. The estimated transparency is decreased by an arbitrary
amount to resolve the contradiction. The adjustment is probably even nonlinear. A
second possibility is that the perception of the degree of transparency is based on
stimulus relations other than those that determine whether the perception of
transparency occurs [3]. This is suggested by an initial study in which a correlation
of only 0.55 was found between the means of 26 subjects’ transparency estimates of
8 stimuli satisfying constraints (i) through (iv) and the transparency predicted by
substituting lightness values in Eq. (3). There are 4 lightness contrasts in Fig. 6b. The



