]
e e 1%

PROBLEM SOLVING
AND PROGRAM DESIGN
IN

i

UN VERS W%MIN_

Elliot B. Koffman

TEMPLE UNIVERSITY

A
vw
Addison
Wesley

Boston San Francisco New York
London Toronto Sydney Tokyo Singapore Madrid
Mexico City Munich Paris Cape Town Hong Kong Montreal

Executive Editor: Susan Hartman Sullivan
Editorial Assistant: Galia Shokry
Composition: Michael and Sigrid Wile
Copyeditor: Stephanie Magean
Proofreader: Elizabeth Bailey

Cover Designer: Leslie Haimes
Manufacturing and Prepress: Caroline Fell

Access the latest information about Addison-Wesley books from our World Wide Web site:
http://www.aw.com/cs

Figures 1.7, 1.8, and 1.11 are reprinted from Essential C++ for Engineers and Scientists, (figs.
1.5, 1.6, and 1.9), by Jeri Hanly. © 1997 Addison Wesley Longman, Inc. Reprinted with permis-
sion.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and Addison-Wesley was
aware of a trademark claim, the designations have been printed in initial caps or all caps.

The programs and applications presented in this book have been included for their instructional
value. They have been tested with care, but are not guaranteed for any particular purpose. The
publisher does not offer any warranties or representations, nor does it accept any liabilities with
respect to the programs or applications.

Library of Congress Cataloging-in-Publication Data
Hanly, Jeri R.
Problem solving and program design in C / Jeri R. Hanly, Elliot B. Koffman.— 34 ed. update.
p. cm.
ISBN 0-201-75490-8 (pbk.)
1. C (Computer program language) [I. Koffman, Elliot B. II. Title.

QA76.73.C15 H363 2002
005.13'—dc21 2001041320
CIP

Copyright © 2002 by Pearson Education, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of the publisher. Printed in the United States of
America.

ISBN 0-201-75490-8

123456789 10-CRW-030201

This book is dedicated to our families.

Jeri Hanly'’s family: Elliot Koffman’s family:
Brian, Kevin, and Trinity Caryn and Debbie
Eric and Jennifier Hanly Robin and Jeff

Richard, Jacquie, and Dustin Koffman

Tlis textbook teaches a disciplined approach to solving problems and to apply-
ing widely accepted software engineering methods to design program solutions as
cohesive, readable, reusable modules. We present as an implementation vehicle
for these modules a subset of ANSI C—a standardized, industrial-strength pro-
gramming language known for its power and portability. This text can be used for
a first course in programming methods: It assumes no prior knowledge of com-
puters or programming. The text’s broad selection of case studies and exercises
allows an instructor to design an introductory programming course in C for com-
puter science majors or for students from a wide range of other disciplines.

In preparing this edition, we have added Chapter 15, which can serve as a
transition to the study of C++ in a subsequent course. We have expanded the
first section of our chapter on iteration (Chapter 5) so that we introduce the full
range of loops conceptually before delving into their C implementations, and we
have included in Chapter 12 more extensive coverage of escape sequences and
format specifiers used with printf. In addition, we have modified Chapter 14
so that it helps students consolidate their understanding of pointers as arrays,
output parameters, and file accessors just prior to their exploration of the role of
the pointer in dynamic memory allocation.

Using C to Teach Program Development

Two of our goals—teaching program design and teaching C—may be seen by
some as contradictory. C is widely perceived as a language to be tackled only
after one has learned the fundamentals of programming in some other, friendlier
language. The perception that C is excessively difficult is traceable to the his-
tory of the language. Designed as a vehicle for programming the UNIX operat-
ing system, C found its original clientele among programmers who understood
the complexities of the operating system and the underlying machine, and who
considered it natural to exploit this knowledge in their programs. Therefore, it is
not surprising that many textbooks whose primary goal is to teach C expose the
student to program examples requiring an understanding of machine concepts
that are not in the syllabus of a standard introductory programming course.

In this text we are able to teach both a rational approach to program devel-
opment and an introduction to ANSI C because we have chosen the first goal as
our primary one. One might fear that this choice would lead to a watered-down
treatment of ANSI C. On the contrary, we find that the blended presentation of
programming concepts and of the implementation of these concepts in C cap-
tures a focused picture of the power of ANSI C as a high-level programming

vii

Preface

language, a picture that is often blurred in texts whose foremost objective is the
coverage of all of ANSI C. Even following this approach of giving program
design precedence over discussion of C language features, we have arrived at a
coverage of the essential constructs of C that is quite comprehensive.

Pointers and the Organization of the Book

The order in which C language topics are presented is dictated by our view of
the needs of the beginning programmer rather than by the structure of the C pro-
gramming language. The reader may be surprised to discover that there is no
chapter entitled “Pointers.” This missing chapter title follows from our treatment
of C as a high-level language, not from a lack of awareness of the critical role of
pointers in C.

Whereas other high-level languages have separate language constructs for
output parameters and arrays, C openly folds these concepts into its notion of a
pointer, drastically increasing the complexity of learning the language. We sim-
plify the learning process by discussing pointers from these separate perspec-
tives where such topics normally arise when teaching other programming
languages, thus allowing a student to absorb the intricacies of pointer usage a
little at a time. Our approach makes possible the presentation of fundamental
concepts using traditional high-level language terminology—output parameter,
array, array subscript, string—and makes it easier for students without prior
assembly language background to master the many facets of pointer usage.

Therefore, this text has not one, but four chapters that focus on pointers.
Chapter 6 discusses the use of pointers as simple output and input/output param-
eters, Chapter 8 deals with arrays, Chapter 9 presents strings and arrays of
pointers, and Chapter 14 describes dynamic memory allocation after reviewing
pointer uses previously covered. In addition, Chapters 2 and 12 discuss file
pointers.

Applications Written in C

This text illustrates the importance of the C programming language by including
a collection of brief articles presenting applications written in C. Included are
descriptions of Vivo320, a video-conferencing tool; LINEUP, a database system
for criminal mug shots; and the Borland C/C++ compiler. In addition, one article
traces the history of the joint development of UNIX and C.

Software Engineering Concepts

The book presents many aspects of software engineering. Some are explicitly
discussed and others are taught only by example. The connection between good

Preface IX

problem-solving skills and effective software development is established early
in Chapter 1 with a section that discusses the art and science of problem solving.
The five-phase software development method presented in Chapter 1 is used to
solve the first case study and is applied uniformly to case studies throughout the
text. Major program style issues are highlighted in special displays, and the
coding style used in examples is based on guidelines followed in segments of the
C software industry. There are sections in several chapters that discuss algo-
rithm tracing, program debugging, and testing.

Chapter 3 introduces procedural abstraction through selected C library
functions, parameterless void functions, and functions that take input parameters
and return a value. Chapters 4 and 5 include additional function examples, and
Chapter 6 completes the study of functions that have simple parameters. The
chapter discusses the use of pointers to represent output and input/output param-
eters, and Chapter 7 introduces the use of a function as a parameter.

Case studies and sample programs in Chapters 6, 8, and 11 introduce by
example the concepts of data abstraction and of encapsulation of a data type and
operators. Chapter 13 presents C’s facilities for formalizing procedural and
data abstraction in personal libraries defined by separate header and implemen-
tation files. Chapter 15 introduces the concept of object-oriented design as
implemented by C++.

The use of visible function interfaces is emphasized throughout the text. We
do not mention the possibility of using a global variable until Chapter 13, and then
we carefully describe both the dangers and the value of global variable usage.

Pedagogical Features

We employ the following pedagogical features to enhance the usefulness of
this book as a teaching tool:

End-of-Section Exercises Most sections end with a number of self-check
exercises. These include exercises that require analysis of program fragments as
well as short programming exercises. Answers to selected self-check exercises
appear at the back of the book; answers to the rest of the exercises are provided
in the instructor’s manual.

Examples and Case Studies The book contains a wide variety of pro-
gramming examples. Whenever possible, examples contain complete programs
or functions rather than incomplete program fragments. Each chapter contains
one or more substantial case studies that are solved following the software
development method. Numerous case studies give the student glimpses of impor-
tant applications of computing, including database searching, business applica-

X Preface

tions such as billing and sales analysis, word processing, environmental appli-
cations such as radiation level monitoring and water conservation.

Syntax Display Boxes The syntax displays describe the syntax and
semantics of new C features and provide examples.

Program Style Displays The program style displays discuss major issues
of good programming style.

Error Discussions and Chapter Review Each chapter concludes with a
section that discusses common programming errors. A chapter review includes a
table of new C constructs.

End-of-Chapter Exercises A set of quick-check exercises with answers
follows each Chapter Review. There are also review exercises whose solutions
appear in the instructor’s manual.

End-of-Chapter Projects Each chapter ends with a set of programming
projects. Answers to selected projects appear in the instructor’s manual.

Appendixes, CD-ROM, and Supplements

Appendix F describes how to use Borland C++ Builder version 5 (see below). It
also describes how to use the free command-line interpreter which can be down-
loaded from the Borland website (www.Borland.com). A reference table of
ANSI C constructs appears on the inside covers of the book, and Appendix A
presents character set tables. Because this text covers only a subset of ANSI C,
the remaining appendixes play an especially vital role in increasing the value of
the book as a reference. Appendix B is an alphabetized table of ANSI C standard
libraries. Appendix C gives a table showing the precedence and associativity of
all ANSI C operators; the operators not previously defined are explained in
this appendix. Throughout the book, array referencing is done with subscript
notation; Appendix D is the only coverage of pointer arithmetic. Appendix E
lists all ANSI C reserved words.

CD-ROM with Borland C++ Builder 5

The textbook comes with a CD-ROM that contains Borland C++ Builder 5.
C++ Builder is an Integrated Development Environment for creating, debugging,
and running C and C++ programs.

Preface Xi

Source Code

An on-line version of the source code figures is available at our anonymous ftp
site. To access, set your ftp to ftp.awl.com. At the prompt, log in as
anonymous and use your internet address as the password. From there, you
change to the directory cseng/authors/hanly/csl.3e.

Instructor’s Manual

The Instructor’s Manual includes chapter by chapter summaries and sugges-
tions based on selected textbook figures. These are available online. You will
need to contact your sales rep for the password and access instructions.

Solutions and Test Questions

Test questions and solutions to the internal self check, review questions, and
selected programming projects are available by contacting your local Addison-
Wesley sales representative.

Acknowledgments

Many people participated in the development of this book. We thank especially
Cindy Johnson, who developed the articles on C applications, and Paul W.
Abrahams, Kenneth Pugh of Pugh-Killeen Associates, Oliver Jones of Vivo
Software Inc., and Michael R. Weisert of Borland International Inc., who pro-
vided the material for these articles. We thank Joan C. Horvath of the Jet
Propulsion Laboratory, California Institute of Technology, for contributing sev-
eral programming exercises. We are grateful for the work of several Temple
University and University of Wyoming students and former students who helped
to verify the programming examples and who provided answer keys for the
host of exercises. These include Mark Thoney, Lynne Doherty, Andrew Wrobel,
Steve Babiak, Donna Chrupcala, Masoud Kermani, and Thayne Routh. We also
thank Jeri’s Computer Science Department colleagues at the University of
Wyoming who have been so willing to answer her questions—Allyson
Anderson, Mark Arnold, and Robin Hill.

It has been a pleasure to work with the Addison-Wesley team in this
endeavor. The sponsoring editor, Susan Hartman, along with her assistant, Galia
Shokry, provided much guidance and encouragement throughout all phases of
manuscript revision. Patty Mahtani supervised the production of the book, while
Michael Hirsch developed the marketing campaign.

JR.H
EB.K.

1. Overview of Computers and Programming 1

1.1 Electronic Computers Then and Now 2

1.2 Computer Hardware 5

1.3 Computer Software 13

1.4 The Software Development Method 22

1.5 Applying the Software Development Method 25
Case Study: Converting Miles to Kilometers 26
Chapter Review 29

Overview of C 33

C language Elements 34

Variable Declarations and Data Types 41
Executable Statements 45

General Form of a C Program 55

Arithmetic Expressions 59

Case Study: Evaluating a Collection of Coins 67
Formatting Numbers in Program Output 72
Interactive Mode, Batch Mode, and Data Files 76
Common Programming Errors 80

Chapter Review 87

ONO LDBWN =

NN NN

op-Down Design with Functions 95

3.1 Building Programs from Existing Information 96
Case Study: Finding the Area and Circumference of a
Circle 97
Case Study: Computing the Weight of a Batch of Flat
Washers 100

3.2 Llibrary Functions 105

3.3 Top-Down Design and Structure Charts 112
Case Study: Drawing Simple Diagrams 112

3.4 Functions without Arguments 114

xiv Contents

3.5 Functions with Input Arguments 125
3.6 Common Programming Errors 136
Chapter Review 136

4. Selection Structures: if and switch Statements 145

1 Control Structures 146

2 Conditions 146

3 The if Statement 158

.4 if Statements with Compound Statements 162

5 Decision Steps in Algorithms 166

Case Study: Water Bill Problem 166

6 More Problem Solving 176
Case Study: Water Bill with Conservation
Requirements 177

7 Nested if Statements and Multiple-Alternative

Decisions 179

4.8 The switch Statement 190

4.9 Common Programming Errors 196

Chapter Review 197

5. Repetition and Loop Statements 207

Repetition in Programs 208

Counting Loops and the while Statement 210
Computing a Sum or a Product in a Loop 214
The for Statement 220

Conditional Loops 229

Loop Design 236

Nested Loops 243

The do-while Statement and Flag-Controlled
Loops 248

Problem Solving Illustrated 252

Case Study: Computing Radiation Levels 252
How to Debug and Test Programs 257
Common Programming Errors 260

Chapter Review 263

©O ONoOUDWN =

?I?I SII Guuuuuunm

- O

Contents XV

Modular Programming 277

6.1 Functions with Simple Output Parameters 278
6.2 Multiple Calls to a Function with Input/Output
Parameters 287
6.3 Scope of Names 293
6.4 Formal Output Parameters as Actual Arguments 294
6.5 A Program with Multiple Functions 299

Case Study: Arithmetic with Common Fractions 300
6.6 Debugging and Testing a Program System 310
6.7 Common Programming Errors 313
Chapter Review 314

Simple Data Types 323

.1 Representation and Conversion of Numeric

Types 324

Representation and Conversion of Type char 331
Enumerated Types 334

lterative Approximations 340

Case Study: Bisection Method for Finding Roots 342
Common Programming Errors 350

Chapter Review 351

NNN N
v how

o

Arrays 363

Declaring and Referencing Arrays 364
Array Subscripts 368

Using for Loops for Sequential Access 370
Using Array Elements as Function Arguments 376
Array Arguments 379

Searching and Sorting an Array 393
Multidimensional Arrays 398

Array Processing lllustrated 403

Case Study: Analysis of Sales Data 404
Common Programming Errors 412
Chapter Review 414

@ 00000000 000000 0
O ONOCUA_WN=—

Xvi Contents

9. Strings 425

String Basics 426

String Library Functions: Assignment and
Substrings 432

Longer Strings: Concatenation and Whole-Line
Input 441

String Comparison 446

Arrays of Pointers 449

Character Operations 455
String-to-Number and Number-to-String
Conversions 461

String Processing lllustrated 468

Case Study: Text Editor 468

Common Programming Errors 477
Chapter Review 479

O © VO0O0 0V VO
© ® Noudr W N=

10. Recursion 489

10.1 The Nature of Recursion 490

10.2 Tracing a Recursive Function 495

10.3 Recursive Mathematical Functions 503

10.4 Recursive Functions with Array and String
Parameters 510
Case Study: Finding Capital letters in a String 510
Case Study: Recursive Selection Sort 513

10.5 Problem Solving with Recursion 516
Case Study: Operations on Sets 517

10.6 A Classic Case Study in Recursion: Towers
of Hanoi 525

10.7 Common Programming Errors 530
Chapter Review 532

11. Structure and Union Types 539

11.1 User-Defined Structure Types 540

11.2 Structure Type Data as Input and Output
Parameters 546

11.3 Functions Whose Result Values Are Structured 552

Contents XVii

11.4 Problem Solving with Structure Types 555
Case Study: A User-Defined Type for Complex
Numbers 556
11.5 Parallel Arrays and Arrays of Structures 564
Case Study: Universal Measurement Conversion 567
11.6 Union Types (Optional) 576
11.7 Common Programming Errors 583
Chapter Review 583

12. Text and Binary File Processing 595

12.1 Input/Output Files: Review and Further Study 596
12.2 Binary Files 607
12.3 Searching a Database 614
Case Study: Database Inquiry 614
12.4 Common Programming Errors 624
Chapter Review 625

Programming in the Large 633

13.1 Using Abstraction to Manage Complexity 634
13.2 Personal Libraries: Header Files 637
13.3 Personal Libraries: Implementation Files 642
13.4 Storage Classes 645
13.5 Modifying Functions for Inclusion in a Library 651
13.6 Conditional Compilation 654
13.7 Arguments to Function main 658
13.8 Defining Macros with Parameters 661
13.9 Common Programming Errors 666

Chapter Review 667

}. Dynamic Data Structures 677

14.1 Pointers 678

14.2 Dynamic Memory Allocation 682

14.3 Llinked Lists 689

14.4 linked List Operators 695

14.5 Representing a Stack with a Linked List 701

Xviii Contents

15. Onto C++

Representing a Queuve with a Linked List 705
Ordered Lists 711

Case Study: Maintaining an Ordered List of
Integers 712

Binary Trees 723

Common Programming Errors 734

Chapter Review 734

743

Appendixes

15.1
15.2

C++ Control Structures, Input/Output, and
Functions 744

C++ Support for Object-Oriented Programming 751
Chapter Review 766

Answers

mogOw>

Character Sets AP1

ANSI C Standard Libraries AP3
C Operators AP21

Pointer Arithmetic AP27

ANSI C Reserved Words AP29

Al

Index

Overview of Computers

and Programming

c h apter

1.1 Electronic Computers Then and Now
f 1.2 Computer Hardware
: 1.3 Computer Software

1.4 The Software Development Method

1.5 Applying the Software Development
Method
Case Study: Converting Miles to Kilometers

Chapter Review

computer

a machine that can receive,
store, transform, and output
data of all kinds

In developed countries, life at the end of the twentieth century is conducted in
a veritable sea of computers. From the coffeepot that turns itself on to brew your
morning coffee to the microwave that cooks your breakfast to the automobile
that you drive to work to the automated teller machine you stop by for cash, vir-
tually every aspect of your life depends on computers. These machines that
receive, store, process, and output information can deal with data of all kinds:
numbers, text, images, graphics, and sound, to name a few.

The computer program’s role in this technology is essential; without a list of
instructions to follow, the computer is virtually useless. Programming languages
allow us to write those programs and thus to communicate with computers.

You are about to begin the study of computer science using one of the most
versatile programming languages available today: the C language. This chapter
introduces you to the computer and its components and to the major categories of
programming languages. It discusses how C programs are processed by a com-
puter. It also describes a systematic approach to solving programming problems
called the software development method and shows you how to apply it.

1.1 ELECTRONIC COMPUTERS THEN AND NOW

computer chip
(microprocessor chip)

a silicon chip containing the
circuitry for a computer
processor

In our everyday life, we come in contact with computers frequently, some of us
using computers for word processing or even having studied programming in
high school. But it wasn’t always this way. Not so long ago, most people con-
sidered computers to be mysterious devices whose secrets were known only by a
few computer wizards.

The first electronic computer was built in the late 1930s by Dr. John Atanasoff
and Clifford Berry at lowa State University. Atanasoff designed his computer to
assist graduate students in nuclear physics with their mathematical computations.

The first large-scale, general-purpose electronic digital computer, called
the ENTAC, was completed in 1946 at the University of Pennsylvania with
funding from the U.S. Army. Weighing 30 tons and occupying a 30-by-50-foot
space, the ENIAC was used to compute ballistics tables, predict the weather, and
make atomic energy calculations.

These early computers used vacuum tubes as their basic electronic com-
ponent. Technological advances in the design and manufacture of electronic
components led to new generations of computers that were considerably small-
er, faster, and less expensive than previous ones.

Using today’s technology, the entire circuitry of a computer processor can
be packaged in a single electronic component called a computer or micro-
processor chip (Fig. 1.1), which is about the size of a postage stamp. Their afford-

