COMPUTING FOR
ENGINEERS AND SCIENTISTS

WITH FORTRAN 77

eAeratibtPeny

Hrergsesstizase

SETARII D08

BeALASEEISEYL L

B e et

crebrarssesdseriih

Daniel D. McCracken

COMPUTING FOR
ENGINEERS AND
SCIENTISTS
WITH FORTRAN 77

Daniel D. McCracken

City College of New York

John Wiley & Sons

New York Chichester Brisbane Toronto Singup()re

Copyright © 1984, by John Wiley & Sons, Inc.
All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of

this work beyond that permitted by Sections

107 and 108 of the 1976 United States Copyright
Act without the permission of the copyright
owner is unlawful. Requests for permission

or further information should be addressed to
the Permissions Department, John Wiley & Sons.

Library of Congress Cataloging in Publication Data:
McCracken, Daniel D.
Computing for engineers and scientists with Fortran 77.

Includes index.

1. Engineering—Data processing. 2. Science—Data
processing. 3. FORTRAN (Computer program language)
L. Tide.

TA345.M395 1984 620.0028"4 83-23473
ISBN 0-471-09701-2

Printed in the United States of America

10987654321

COMPUTING FOR ENGINEERS AND
SCIENTISTS WITH FORTRAN 77

To Charles B. Stoll and Walker G. Stone
for their support and encouragement as my first editors

This book uses the study of programming in Fortran 77 to provide:

B A programming competence that an engineer or scientist can use in work

or study.

® An understanding of the powers and limitations of computers.

B A basis for effective communication with programming experts when more

difficult tasks are encountered.

® An appreciation for the increasingly common ways to use a computer as a

tool without any conventional programming.

Since Fortran is the lingua franca of applications in engineering and science,
it 1s the choice for this book. Fortran 77 is used, specifically, because it is the
latest standard and because its newer features permit the writing of structured
programs that are much easier to understand and maintain than the programs
written in earlier versions of Fortran.

As with my previous books, there are many illustrative programs. The ex-
amples are drawn from engineering, science, and college mathematics, at a level
consistent with the fact that a course of this type is often taught in the freshman
year. A number of standard techniques in elementary numerical methods are
introduced through programming examples, recognizing that many students
will never take a formal course in numerical methods. Throughout the text
there are warnings about traps for the unwary, such as the accumulation of
roundotf errors, the eftects of finite precision, and the foolishness of blind
reliance on double precision.

Readers with the goals assumed here have no need to know all of the Fortran
77 language. Some of the older and less desirable features of the language (the
arithmetic IF, the assigned GO TO, etc.) are not covered at all. Others are
covered in part. List-directed input and output serve nicely while the reader is
learning more fundamental matters, for example, and then formatted imput
and output are considered at an appropriate depth in Chapter 6.

Heavy emphasis is placed on good programming style. Logic structures are
held to a bare minimum and are used in a consistent way. Statement numbers
are never attached to statements other than CONTINUE and FORMAT. The
GO TO statement is used only in simple Fortran 77 implementations of the
WHILE and REPEA'T structures. Pseudocode is introduced in the third chapter,
and subprograms are introduced in the fourth—the latter much earlier than in
most other Fortran texts. Subprograms are used consistently thereafter as a
program organizing tool, and effective use of subroutine libraries is emphasized
with several examples from the IMSL library. In Chapter 5, after the reader
has enough background to understand the issues, there is a full treatment of
program development, including modularization, top-down and stepwise de-
velopment, and program testing. These issues are reinforced in later chapters
with larger example programs.

viii PREFACE

There are many exercises, ranging from “fingerwork” to reinforce the syntax,
to challenges that might serve for term problems. Answers to nearly half of the
exercises are given at the end of the book.

The final chapter is a “horizon-broadener,” with a wide-ranging sampling of
ways to use computers without any conventional programming at all: mathe-
matical and engineering packages, symbolic mathematics, bibliographic search-
ing, NOMAD as an example of a fourth-generation language, and text editing
and formatting. '

In sum: The book is—among other things—a text on Fortran programming,
and is intended for use in a conventional course on that subject. I, for one, have
no doubts about the legitimacy of such a course for future engineers and sci-
entists. But the reader will be left with a clear understanding that when the
computer is viewed as a tool of the practicing engineer or scientist, there are
increasingly attractive alternatives to actual programming for getting applica-
tions done. That statement is true even today, and will be an unremarkable
commonplace in the working careers of students now in school. The book thus
provides a solid core of skills for use in today’s world of computer applications,
and a bridge to tomorrow’s.

An extensive Instructor’s Manual gives answers to all exercises that do not
have answers in the book. It also contains suggestions for newer teachers on
how to teach programming, an annotated model syllabus, sample exams, and a
summary of the very few programming changes that are needed when the book
is used in the WATFIV environment.

Daniel D. McCracken
New York
October, 1983

Like most programming, producing a book is a team effort. It is a pleasure to
acknowledge the many and varied contributions of the following people.

Gregory P. Williams, Masstor Systems Corporation, an old friend from Gen-
eral Electric days, served as a faithful reviewer and provided early guidance
that influenced the shape of the book in fundamental ways.

Charles L. Baker, Science Applications, Inc., supplied much good advice on
programming style matters and on the way programming is really done.

Jetfrey R. Sampson, University of Alberta, and Paul P. Clement, Advanced
Systems, Inc., were the most thorough and helpful reviewers I have ever worked
with. (And that’s saying something, because I value the contribution of reviewers
very highly indeed, and have worked with many good ones.) Their contributions
ranged from catching programming slips, to improving style, to suggesting ma-
jor revisions in early drafts.

John L. Lowther, Michigan Technological University, also did a fine job of
reviewing, and suggested the Fortran 77 implementation of the WHILE con-
struct that I have used. He disclaims credit for inventing it, but I hadn’t seen it
and it is much better than what I had been planning to use.

Michael J. Clancy, University of California, Berkeley, and Leon Levine, Uni-
versity of California, Los Angeles, were particularly helpful in the early planning
stages, drawing on their extensive experience with the kind of course for which
this book is intended.

My editors at Wiley, first Gene A. Davenport and now Carol Beasley, capably
assisted by Judith Watkins, were uniformly helpful and supportive. High on the
long list of things they did to assist me was the provision of an astonishing
number of highly talented reviewers, without whose services I simply would not
know how to approach this kind of project. Most of these reviewers worked
anonymously; I am delighted that all of them said “yes” when my request to
give them their due credit here was passed along.

The Wiley reviewers: J. Mack Adams, New Mexico State University; Donald
E. Burlingame, State University of New York, Potsdam; Donner A. Dowd, Jr.,
Lake Superior State College; Henry A. Etlinger, Rochester Institute of Tech-
nology; Elaine N. Frankowski, Honeywell Information Systems; Robert M.
Graham, University of Massachusetts; Charles E. Hughes, University of Central
Florida; Thomas E. Kurtz, Dartmouth College; Richard J. LeBlanc, Georgia
Institute of Technology; Hans E. Lee, Michigan State University; George L.
Miller, North Seattle Community College; Frederick J. Mowle, Purdue Univer-
sity; Steven S. Muchnick, University of California, Berkeley; James T. Perry,
San Diego State University; Franklin Prosser, Indiana University; Woodrow E.
Robbins, North Carolina State University; Bernard H. Rosman, Framingham
State College; J. Denbigh Starkey, Washington State University; David B.
Teague, Western Carolina University; John F. Wakerly, Stanford University;

x ACKNOWLEDGMENTS

Jerry M. Waxman, Queens College; Lloyd Weaver, Purdue University; R. A.
Williams, University of Akron.

Chapter 9 contains several examples drawn from the subroutine library of
IMSL, Inc. Thomas J. Aird and Granville Sewell were generous in their assist-
ance. Dr. Sewell also created the input and produced the graph using IMSL’s
TWODEPEP in Chapter 10.

Chapter 10 includes a section on muMATH, a symbolic mathematics package
from the Soft Warehouse, Honolulu. David R. Stoutemyer made several helpful
suggestions in getting this material right.

Chapter 10 also contains a section on bibliographic searching based on the
facilities of DIALOG, Inc. Charles T. Meadow and Charles D. Sullivan were
most helpful in adapting this material so that it both showed what is possible
and remained intelligible to the reader unfamiliar with such services.

All of the text and almost all the programs were developed using the facilities
of Dun & Bradstreet Computing Services, formerly National CSS, Inc. (This
name change came too late, unfortunately, to be able to change the text refer-
ences to National CSS.) My closest contacts there in recent years have been
Nicholas A. Rawlings and Christopher Grejtak, with much help on VS Fortran
from Lloyd E. Fuller and Walter H. Horowitz. Mr. Rawlings also reviewed much
of the manuscript and assisted in a variety of other ways, especially with the
NOMAD material in Chapter 10. The letter reproduced on page 320 attempts
to express my appreciation to some of the many others now or formerly at the
company to whom I am indebted.

A few of the programs were run on the facilities of the City University of
New York, and I wish to express my appreciation for that support. My own
institution, the City College of New York, is a component of the City University,
and it is a pleasure to express my appreciation for the support given to me by
my colleagues and by my chairman, George G. Ross. My appreciation also goes
to the director of the CCNY computer center, George W. Elder, and to Paul
Fortoul, a systems programmer who has been a major factor in my education
in the past two years.

Too little credit is given to the people who turn a manuscript into a book:
the production staff, with their wide range of talents and responsibilities. Their
usual thanks is that if they do their job right, nobody notices! The production
people T worked with at Wiley were uniformly competent, cooperative, and
effective. [am happy to name them: Deborah Herbert, Madelyn Lesure, Eugene
Patti, Elaine Rauschal, and Ruth Sandweiss. I appreciate all of their efforts.

Finally, I wish to say “thank you” to my students at City College. I suppose
it’s been said before, but I think I have learned more from them than they have
learned from me. They make teaching a pleasure.

D.D.M.

COMPUTING FOR ENGINEERS AND
SCIENTISTS WITH FORTRAN 77

CHAPTER ONE
GETTING STARTED IN COMPUTING AND FORTRAN 1

CHAPTER TWO
THE ASSIGNMENT STATEMENT AND RELATED MATTERS

CHAPTER THREE
CONTROL STRUCTURES 43

CHAPTER FOUR
SUBPROGRAMS, 1 87

CHAPTER FIVE
PROGRAM DEVELOPMENT AND TESTING 107

CHAPTER SIX
FORMATTED INPUT AND OUTPUT 131

CHAPTER SEVEN
THE DO STATEMENT AND ARRAYS 153

CHAPTER EIGHT
DOUBLE PRECISION, COMPLEX, LOGICAL,
AND CHARACTER VARIABLES 185

CHAPTER NINE
SUBPROGRAMS, II 221

CHAPTER TEN
NONPROCEDURAL APPROACHES TO APPLICATION
DEVELOPMENT 263

APPENDIX
FORTRAN INTRINSIC FUNCTIONS 321

ANSWERS TO STARRED EXERCISES 327
INDEX 357

17

GETTING STARTED
IN COMPUTING
AND FORTRAN

The uses of computers

Electronic computers are widely used in the solution of the problems of science,
engineering, business, and education. This use is based upon their ability to
operate at great speed, to produce accurate results, to store large quantities of
data, and to carry out long sequences of operations without human intervention.

Here are some examples of the kinds of applications that we assume to be of
interest to readers of this book.

B Designing a chemical plant requires calculations of capacities, operating
conditions, and yields, under a variety of circumstances. Determining the op-
timum operating conditions, taking into account technical and economic factors,
requires large amounts of computer time.

® Weather prediction studies involve large amounts of data and the solution
of equations that, although not inherently difficult, call for vast amounts of
computation.

B Staustical studies of the relationships among various factors that affect a
person’s learning ability often require computers. The computations may be as
modest as a student research project, or as complex as a study following millions
of people for many years.

® The communications industry uses computers to store, process, and dissem-
inate information. Telephone systems make intensive use of computers for bill-
ing, network management, and—in increasing numbers—within the telephones
themselves. In a different kind of communication, all the text for this book was
processed by computer, with drafts produced by one computer and the pho-
tocomposition of the final book by another. More and more computing involves
information of a textual sort or digitized voice data, rather than what we ordi-
narily think of as “numbers.”

® The investigation of the possible structure of a complex organic compound
could involve a combination of computations of binding energies, interatomic
distances, and so on, with an elaborate computer program to present the results
in a graphical form, often in color.

The

2 COMPUTING FOR ENGINEERS AND SCIENTISTS WITH FORTRAN 77

B The design of an airplane uses thousands of hours of computer time to
investigate the interrelated requirements of structures, aerodynamics, power
plants, and control systems as they would operate under various flight condi-
tions. After a prototype has been built, flight testing generates voluminous data
that must be captured and analyzed, the latter often using statistical techniques.
Then, during manufacturing, many applications that would usually be called
“data processing” come into play: project control, materials requirements plan-
ning, inventory management, purchasing, and quality control, among many
others. Finally, operating such a fleet of equipment requires computers to order
spare parts and keep track of them, schedule crew assignments and aircraft
maintenance, and plan flights.

"The computer techniques needed to work with applications as diverse as these
depend to a certain extent on the subject matter of the task. But the person
using a computer in any of them would need to know something about how to
specify the desired processing to a computer, which is essentially what this book
is about. And while we are learning to “talk to” a computer, we shall also look
at small but representative examples of a variety of applications that are typical
of the way computers are used in engineering and science.

steps in solving a problem with a computer

There is much more to solving a problem with a computer than the actual use
of the computer. It is instructive to outline the complete process of setting up
a technical problem for computer solution to see just what people do and what
the computer does.

Problem identification and goal definition

A computer cannot decide for us what we want to do. We have to decide what
the system under development is supposed to accomplish, what goal or com-
bination of goals it must satisfy, under what conditions it must operate, and
what general approach to solving the problem is to be taken. In some applica-
tions this step may be trivial; in others it may take months or years. In any case,
the step obviously demands full knowledge of the problem area; there is usually
little the computer can do to help us with it.

Mathematical description

In many although not all of the kinds of applications that will be considered in
this book, it is necessary to formulate a mathematical description of the process
under study. This can generally be done in a variety of ways; an approach must
be chosen or a new one developed if no standard method applies. This step, in
which the computer is not involved, requires full knowledge of the problem and
of the relevant branches of mathematics.

Numerical analysis

"The mathematical formulation of the problem may not be directly translatable
to the language of the computer, since the computer can only do arithmetic on
rational numbers and make simple decisions. Differential equations, integrals,
and trigonometric functions, to name a few common examples, must be ex-
pressed in terms of arithmetic operations. Furthermore, it must be established

GETING STARTED IN COMPUTING AND FORTRAN 3

that any errors inherent in the data, or introduced by such operations as ex-
pressing continuous functions in terms of finite approximations, do not invali-
date the results.

This entire branch of modern mathematics is largely outside the scope of this
book. We shall assume that the reader approaches the problem-solving process
with a method of solution—in this sense—in hand. We shall, however, illustrate
quite a number of elementary numerical methods in the course of demonstrat-
ing various programming concepts.

Algorithm formulation

The next step is to devise a precise and unambiguous statement of exactly what
we want the computer to do, expressed as a finite sequence of the operations
of which it is capable. A computer cannot follow the order “solve this equa-
tion”—at least not in any direct sense, in Fortran. (But see the short discussion
in Chapter 10 of muMATH, where we shall see a few examples of operations
on equations in symbolic form.) It can follow the order “square the number
identified by the variable named X2REAL,” or “go back to the beginning if the
current value of the variable named EPS is greater than 0.0001,” or “divide SUM
by N.” Furthermore, and this is crucial, the exact sequence of actions must be
specified in complete detail in advance, especially at all points where the com-
puter is required to make a “decision” based on relationships among values in
the computation. An unambiguous definition of the actions to be carried out in
solving a problem is called an algorithm. An algorithm might be expressed in
English sentences, or in a computer language such as Fortran, or in a notation
called pseudocode.

Computer programming

The next task, assuming the algorithm was not originally expressed in a pro-
gramming language, is to express it so. Fortran is one language among many
others used for this purpose. It is the language most commonly used for the
types of technical problems that we address in this book. Fortran was developed
in the mid-1950s by IBM and some of its customers, with a team led by John
W. Backus.

A computer language imposes restrictions of its own in terms of what kinds
of commands it can “understand” and carry out; different languages have dif-
ferent capabilities. Furthermore, the exact form in which our orders to the
computer are expressed is prescribed for each language, and the rules are gen-
erally rather inflexible.

One major purpose of this book is to enable you to construct correct Fortran
programs to solve problems of interest to you. Even if, as will probably be the
case, you do most of your computer work using programs written by others,
knowing Fortran will give you a basis for understanding what computers can
(and cannot) do. It will also give you a vocabulary for talking about your needs
with computing experts.

Program testing

There are so many opportunities to make mistakes in programming that most
programs do not operate as intended when first tried, because of errors in any
of the steps listed above. Mistakes must be located and corrected, and the pro-

4 COMPUTING FOR ENGINEERS AND SCIENTISTS WITH FORTRAN 77

gram must be thoroughly tested to establish as fully as possible that it actually
does what the programmer meant it to do. The computer is used heavily in this
step, which can easily take longer than writing the program in the first place.

We shall place considerable emphasis in this book on writing programs in a
way that minimizes programming errors and facilitates locating those that do
occur. The techniques suggested will also greatly facilitate the maintenance of
programs. (All programs that are used over an extended period of time have
to be modified as requirements and computer equipment change.) Programs
written with maintenance in mind are very much easier to maintain than those
where this consideration has been ignored.

Production

Now, finally, the program can be used to process “real” data, that is, data other
than the sample values used in program testing. This may be done in a variety
of ways, depending upon the computer and the application. Sometimes data is
entered from a computer “terminal” (a typewriterlike device that may also have
been used to prepare the program) with results presented on a video display or
other device that is part of the terminal. Sometimes many sets of data values
are punched into cards and all of the cases run consecutively, with results printed
on a paper listing. In other cases the computer is on-line as part of a process
control system. Here, the data is obtained by direct input from sensors located
in the process equipment; the output is a combination of printed logs and of
signals controlling the operation of the process equipment.

Interpretation

Exceptin the process control situation just noted, results produced by the com-
puter in response to our program do not always constitute an “answer” to the
problem. The computer user must often now interpret the results to see what
they mean in terms of the combination of goals of the proposed system. It is
often necessary to repeat some or all of the preceding steps before the problem
is really “solved.”

Several conclusions may be drawn from this discussion. First, the computer
does not, by itself, solve problems. It only follows exactly the computational
procedures (i.e., the program) given to it. Second, a computer does not relieve
the user of the responsibility of planning the work carefully; in fact, use of the
computer demands more careful planning than noncomputerized methods or-
dinarily do. This is an important secondary benefit of using the computer.
Third, a computer does not in any way eliminate or even reduce the need for
a full and detailed understanding of the problem area, or for a thorough knowl-
edge of the related mathematics.

The emphasis in the first part of this book is on the programming step.
Problem identification, goal definition, and mathematical formulation are in the
province of the technical area under consideration: electrical engineering, phys-
ics, statistics, operations research, or whatever. Numerical analysis 1s a branch
of modern mathematics in its own right. Program testing is discussed, but not
at great length and mostly in the context of how to write programs that minimize
the probability of programming errors. Production is not ordinarily the pro-
grammer’s responsibility, except possibly in the case of student exercises. The
interpretation of results brings us back into the specialized field of the problem
area.

GETTING STARTED IN COMPUTING AND FORTRAN 5

But don’t write a program at all if one already exists!

Anyone who needs to know Fortran should also know that there are often

alternatives to writing Fortran programs. For a great many of the things that a

user might wish to do with a computer, other people have already written pro-

grams which, possibly with slight modification, will serve the need. Programs of

this type fall into two categories: software tools and applications packages.
Examples of software tools:

W A fext editor permits the entry, modification, and other processing of textual
data, such as letters, reports, and computer programs. A related ftext formatter
can be used to print documents in an attractive form or used to drive photo-
composition equipment.

® The output of a program is often most useful if displayed graphically. A
graphics package produces pictures on a video display terminal or plotter. It is
seldom in the user’s best interest to write his or her own graphics programs,
since they can be exceedingly complex and since such programs already exist.

B There are many hundreds of databases on a vast range of subjects such as,
new chemical compounds, abstracts of publications in psychology, stock and
bond prices, or the AP and UPI news wires. Access to these databases is usually
through a time-sharing network, with a telephone connection between the user’s
terminal and the database.

Examples of applications packages:

® An electrical engineer wishing to study the performance of a proposed
electrical network containing various kinds of components, including nonlinear
devices such as diodes and transistors, can choose from among perhaps a dozen
different packages that deal with such problems. Some of the packages analyze
various special aspects of the network, such as the effect of electrical noise, or
the identification of the critical components in terms of a worst-case analysis of
component characteristic variations.

B The designer of an optical lens can turn to any of several packages that
may “know” more about the intricacies of lens design than the average designer
does.

® A chemical engineer wishing to study the probable performance of a pro-
posed piping network can choose the package that best fits his or her precise
needs: Transient or steady-state? Compressible or incompressible? With or with-
out loops in the piping?

® The designer of a new integrated circuit chip has available a number of
packages that help lay out the components so as to minimize fabrication prob-
lems, power consumption, time delays due to capacitance, or whatever else may
be of concern.

There are literally thousands of applications packages of the general sort
suggested by these examples. When the problem to be solved fits an existing
package, it almost always makes sense to buy or lease it rather than writing a
program yourself. The package, in most cases, will have been written by top
experts in the field. It will have been thoroughly checked out—in part by other
users!—and therefore be much less likely to contain significant errors than what-
ever you might write yourself. And there will be an organization standing behind

6 COMPUTING FOR ENGINEERS AND SCIENTISTS WITH FORTRAN 77

it for maintenance if problems do develop, or if modifications are needed to
make the package more effective or to make it work on new computing equip-
ment.

So why learn Fortran?

Then what is the purpose of learning Fortran at all, if you will more commonly
use software tools and applications packages instead of writing Fortran pro-
grams? Four reasons:

® You need to know what a computer is capable of, and, sometimes just as
important, what it is not capable of. Learning a programming language and
solving some problems yourself is the best way to gain an understanding of the
power and limitations of a computer.

® [t will often happen that the program someone else has written will not
quite do what you want. What then? In some cases, it will be your task to modify
the package to fit your needs.

B [f the modifications are beyond your nonprofessional abilities, or if no
existing program is suitable and a new one must be written, you will need to
call upon the services of experts. To interact effectively with them you will need
to know not only what is reasonable to ask (in terms of what a computer can
do) but also enough about their field to be able to talk intelligently. Learning
Fortran and writing some programs yourself provides that background.

® Many students, especially those in electrical engineering, will need to take
further courses in computing to be able to design systems that incorporate
microcomputers. Studying Fortran is one good way to get started learning enough
about computers and computing to be able to do such design work.

This book deals with both aspects of getting work done with a computer, i.e.,
writing Fortran programs yourself and using programs that others have written.
In the first eight chapters of the book you are given enough information about
Fortran to enable you to write meaningful programs. Using this knowledge, you
will be able to write programs in your other courses (if you are in school), and
this experience will serve your need to know what a computer can do and how
to talk with computer experts. Chapter 9 emphasizes the use of preprogrammed
libraries whenever possible. The last chapter is a sampling of various ways to
get work done with a computer without doing any “programming” at all, at
least not as “programming” has conventionally been understood.

A simple program

Let us begin the study of Fortran programming by considering a simple example
of a program, one where the required processing is so short and easily stated
that the algorithm is a matter of one sentence.

The task is to compute the value of a certain fourth-degree polynomial for
a value of X that is to be obtained from the computer terminal or from a
punched card. Let us turn to the program shown in Figure 1.1 to see how this
job might be done.

NOTE! The presentation of this first program is designed only to give you

