UNIXV

AND

XENIX

SYSTEM V

PR OGRA MMER ’S

G

MYRIL CLEMENT SHAW AND
SUSAN SOLTIS SHAW

UNIX'V

AND

XENIX

SYSTEM V
PROGRAMMER’S
TOOL KIT

L CLEMENT SHAW A
SUSAN SOLTIS SHAW

TAB BOOKS Inc.
TAB Blue Ridge Summit, PA 17214

UNIX is a registered trademark of AT&T.

Microsoft, XENIX, and MS-DOS are registered trademarks of Microsoft
Corporation.

DEC, PDP-7, and PDP-11 are registered trademarks of Digital Equipment
Corporation.

SCO is a trademark of The Santa Cruz Operation.

FIRST EDITION
FIRST PRINTING

Copyright © 1986 by Myril Clement Shaw and Susan Soltis Shaw
Printed in the United States of America

Reproduction or publication of the content in any manner, without mem{{ Q
permission of the publisher, is prohibited. No liability is assumed with respectto
the use of the information herein.

Library of Congress Cataloging in Publication Data

Shaw, Myril Clement.
UNIX V and XENIX system V programmer:s tool kit.

Includes index.

1. UNIX (Computer operating system) 2. XENIX
(Computer operating system) 3. C (Computer program
language) |. Shaw, Susan Soltis. |l. Title.
QA76.76.063S552 1986 005.43 86-14434
ISBN 0-8306-0251-8
ISBN 0-8306-2751-0 (pbk.)

UNIX"V

AND

XENIX"

SYSTEM V
PROGRAMMER’S
TOOL KIT

Preface: The UNIX V
Programming

Environment

S

HE PUBLICATION OF THE SYSTEM V INTERFACE DEFINITION MARKED

the entry of UNIX into a new era. UNIX was suddenly thrust from the
role of technical wonder into the role of an exciting and complete application
development environment. The Interface Definition provided specifications and
standards by which application programs could achieve nearly total hardware
independence. Applications can now be written that are truly portable from
mainframe to PC—but only if the application developer writes for UNIX V
using the Interface Definition.

UNIX V is the de facto industry standard for all UNIX systems, as well
as UNIX clones and look-alikes. All UNIX-like operating systems are migrat-
ing toward the UNIX V standard. Microsoft and SCO (The Santa Cruz Opera-
tion) have released the XENIX V operating system, which provides a superset
of UNIX V running on virtually all 8086-, 8088-, 80286-, and 80386-based
microcomputers. The AT&T 3B line of computers, ranging from supermicro
to supermini, all run UNIX V and the Amdahl UTS mainframe system runs
a UNIX V operating system.

It is into this environment of increasing consistency and standardization
that the application developer is placed. Fortunately, UNIX V and its cohorts
provide a rich and exciting application development environment.

Unfortunately, even gaining a glimmer of the content of this wonderful
operating environment can be difficult. This book was written in the hope of
remedying that situation. It is the book the authors would have liked to have
had available when they were first introduced to the UNIX V application de-
velopment environment.

viii

Acknowledgment

The authors wish to acknowledge the gracious assistance of Bruce Steinberg
and Brigid Fuller and the Santa Cruz Operation for providing XENIX System V.

Introduction

HE UNIX V AND XENIX SYSTEM VPROGRAMMER’S TOOL KITIS ADIFFER-

ent type of computer book. Strictly speaking, it is not a how-to book,
nor is it a book for teaching the minutiae of UNIX commands. Both of these
events occur during the course of the text, and are related to the main pur-
pose for the book; they do not encompass the purpose itself.

This book is designed to be a comprehensive resource, defining the tools
available to the application programmer in the UNIX V and XENIX System
V environment. The reader of this book should come away with knowledge
of what tools are and are not available for the application development process
under these systems.

The title of the book, particularly the word ‘‘toolkit,” is meant to provoke
an image in the reader’s mind. When a programmer begins work in the UNIX
V environment, a large toolkit is opened. Not only is the vast array of UNIX
shell commands suddenly available, but also revealed is a very specific set of
utilities, commands, functions, and system calls explicitly devoted to improv-
ing the application development environment. Thus UNIX is an application
programmer’s toolkit: it contains all the necessary tools of the programmer’s
trade. R

There are two important steps in honing the skills required to become a
master craftsman in the UNIX environment. First, one must become aware
of what tools are available, and what purpose those tools serve. Second, the
proper use of the tools must be learned through a combination of instruction
and practice. This book is designed to facilitate the first of these steps.

The reader of this book will become aware of what UNIX V and XENIX
System V have to offer. UNIX tools are defined and described, and during
the course of this exploration, some detailed explanation of usage will be found.

The book is written for an (already) technically oriented individual who
will be able to learn how to handle the tools offered. The reader should be
able to accomplish the second step of the honing process, the use and prac-
tice, alone.

This is not a general-purpose introduction to UNIX. Generalities regard-
ing UNIX usage and the basic shell commands are not explained. Instead, the
book focuses on the features of UNIX which are of special interest to the ap-
plication programmer. A VO Ty

The book will probably not be of interest to the casual reader and most
certainly will not make The New York Times bestseller list. It is aimed at those
who are technically oriented managers, and at programmers who already have
a general working knowledge of UNIX and programming. These readers will
find the book of value both as a means of increasing their knowledge of UNIX
and for determining UNIX suitability for solving specific problems. A techni-
cal manager may read the book cover to cover to get a firm grasp on the appli-
cation development capabilities available through UNIX. The programmer may
refer only to specific chapters as an aid to understanding a particular tool—
perhaps simply to find that slightly different slant in an explanation that can
bring clarity to a confusing point of information. 77 e

The terms UNIX and UNIX V are used throughout the book interchange-
ably, and are also used to encompass XENIX. Where UNIX and XENIX di-
_verge, the divergence is specifically noted.

The Santa Cruz Operation (SCO), in conjunction with Microsoft, has
released XENIX System V. XENIX System V is a true and excellent port of
UNIX V as released by AT&T. All of the commands, functions, utilities, and
system calls work as described in both UNIX V and XENIX System V with
few exceptions, which are noted as they occur.

This book is divided into three distinct but integrated parts. Part I pro-
vides an overview of the UNIX toolkit. The intrepid programmer or techni-
cian should be able to begin practice and experimentation with the basic UNIX
tools after reading only Part I. Part II provides detailed explanations of the
most common UNIX tools, and is a good reference. Part III provides an over-
view of the more esoteric UNIX tools—those useful, sophisticated tools which
are less commonly used.

Finally, this book does not stand alone. The UNIX Reference Manual will
still be necessary for points of precise syntax, much as a dictionary is always
necessary for an author. Reading about UNIX is like reading about playing
golf: without actual practice, very little is learned. Understanding of UNIX
ultimately comes with use. This book should provide a springboard from which
the tools contained in the vast UNIX toolkit can become familiar. It is up to
the reader to practice using them.

xi

Contents

Preface
Acknowledgment

Introduction

Part |

An Overview of the UNIX V Programming Environment

A History of Unix 3
The UNIX Programming Philosophy 5
The Unix Operating Environment 5
The UNIX Kernel—The UNIX File System—The UNIX Programmer’s Environment

UNIX V Editors Reviewed

The ed Editor 16
ed Addresses—Address Labels—Adding to an Existing File—Executing Shell Commands—Exiting
ed—Loading a File—Deleting and Changing Lines—Global Changes—ed Summary

The vi Editor 24
The vi Operating Modes—Text Entry—Cursor Control—Deleting and Changing Text—Copying and
Moving Text—Executing Shell Commands—The vi Environment—vi Summary

UNIX V and C Programming

C Facilities in UNIX V32
The C Compiler—The Linker—lint—The General-Purpose Program Debugger

viii

ix

16

31

The Source Code Control System 44
Make and Makefiles 45

Standard C Files 45

UNIX V System Calls 47

Summary 47

PART i
A C Primer 51

Introducing C 51
The First C Program 52
Data in C 53
Controlling Program Flow 55
Pointers and Addresses 59
Data Structures 61
The Matter of C Style 61
Documentation and Comments—Code Structure—Code Complexity
Summary 69

The Source Code Control System 70

SCCS Files 72
SCCS Keywords 73
SCCS Commands 75
Summary 82

Checking C Source Code 83

Using lint 83
Invoking lint—Checking for Bad Syntax—Checking Function and Variable Usage—Unreachable
Statements and Infinite Loops—Checking Return Values—Type Checking—Other lint Checking—
lint Directives—Summary

The C Beautifier 92
Invoking cb

Summary 93

The C Compiler 97

The C Preprocessor 98

Invoking the C Preprocessor—cpp Directives—Using cpp—Summary
The C Compiler 104

Invoking the C Compiler—C Compiler Options—Summary

The Automatic Program Maintenance Facility 111

Dependencies and make 112
Makefiles Defined 113

Invoking make 114

Macros and make 116
Miscellaneous make Features 118
Using make 120

Summary 125

Programming with Standard Input and Output 126

Standard Input, Standard Output, Standard Error 127
Special Features 130

The stdio.h File 131

The Basic 1/0 Functions 134

Disk /0 140

Interprocess Communication 143

Summary 149

10

11

12

13

Programming with the Math Library

Using the Math Library 150
Contents of the Math Library 151
Numeric Conversion—Bessel Functions—Error Functions—Exponentiation Functions—Numeric
Value Functions—Trigonometric Functions—Hyperbolic Functions—Miscellaneous Functions
Summary 156

PART Il
Screen Control Tools

Direct Screen Access 160

Screen Access with CURSES 163
The CURSES Routines 163
Summary 170

Using lex

Invoking lex 172

Regular Expressions in lex 178
Actions in lex 181

Creating lex Source 184
Summary 186

Miscellaneous UNIX Tools

The Symbolic Debugger 188

The m4 Macro Processor 189

The terminfo File 196

Device Drivers 198

Assembler Language Interface 199
Summary 199

Appendix A: ed Command Summary

Appendix B: vi Command Summary

Appendix C: Shell Command Summary

Appendix D: The XENIX-to-DOS Cross-Development System
Appendix E: Standard UNIX V System Calls

Appendix F: ASCII/Octal/Hexadecimal Conversion Tables
Bibliography

Index

150

159

171

187

203

208

213

223

226

235

237

239

Part |

Chapter 1

An Overview of The
UNIX V Programming

Environment

NIX V OFFERS THE PROGRAMMER ALL THE TOOLS NECESSARY FOR A
U successful programming experience. Useful features range from highly
structured programming languages to sophisticated debugging aids, and in-
clude editors, calculators, compilers, linkers, source code control mechanisms,
compilation aids, and a host of other accessible tools. The aggregate makes
UNIX V in many respects an ideal programming environment.

A HISTORY OF UNIX

The somewhat eccentric evolution of UNIX is entering the realm of folk-
lore. Because of its origins, the existence and present form of UNIX could
hardly have been anticipated by its developers. The growing acceptance and
increasing use of UNIX in production environments was never expected. The
developers of this operating system initially wanted nothing more than a mech-
anism for handling files on a Digital Equipment Corporation PDP-7.

In the late 1960s, Ken Thompson (now UNIX legend, then just another
mortal at Bell Laboratories in Murray Hill, New Jersey) worked under an oper-
ating system called MULTICS. By corporate fiat, MULTICS was eliminated
as an allowable operating environment. Ken Thompson was left without an
operating system under which to do his research.

The modus operandi at Bell Labs in those days was to encourage consider-
able independent research by providing certain employees with approximately
50% unstructured time during each work day. Ken Thompson’s particular in-

terest was an orrery (planetary motion) simulation application. After MUL-
TICS was phased out, he acquired a DEC PDP-7 with no operating system
sufficient for the complexities of the simulation.

To solve the problem, Thompson developed UNIX, deriving its name from
a semisatirical pun on the previous system, MULTICS. UNIX was to func-
tion as a file handler and minimal operating system for the PDP-7. Thus, in
1969, UNIX was born, the result of a part-time project to allow files to be stored
and manipulated on a PDP-7. It was written in B, an interpreter for CPL (Com-
bined Programming Language), and in Assembler, which handled the hardware-
dependent aspects of the project. The initial UNIX was a single-user, multi-
programming operating system.

The environment at Bell Labs at that time encouraged others to join in
the development of this new operating system—but just for fun. Thus, after
its initial release, Dennis Ritchie joined Ken Thompson in efforts to enhance
UNIX. Others began to make contributions as they saw fit.

UNIX was not designed to be a coherent operating system for large appli-
cations in production environments. It was a kind of corporate hobby rather
than a project with a clear objective. Thompson, Ritchie, and the others en-
joyed the technical opportunities involved in UNIX development, but they ab-
solutely were not trying to create a product. They were simply programmers
building a programmer’s environment.

After one intermediate step, Ritchie and Thompson rewrote UNIX in C—
but only after Ritchie had written the C language under UNIX. This version,
available in 1973, was the beginning of UNIX as it is known today. It con-
sisted of approximately 10,000 lines of C code and roughly 2000 lines of As-
sembler for the machine-dependent functions. The on-line user’s manual was
a part of this version, cleverly allowing others from the lab to make contribu-
tions to the UNIX code, write documentation, and include it in the manual
as they worked.

As UNIX continued to be developed, it was either freely given or sold at
minimal cost to colleges and universities. Students began to learn and experi-
ment with UNIX. Enhancements ensued, and UNIX-knowledgeable people be-
gan to appear in the data processing marketplace. The UNIX bandwagon had
begun to roll.

Notable among the schools using UNIX was University of California at
Berkeley. The enhancements emerging from the Berkeley campus were widely
acclaimed and began to be absorbed into the body of UNIX proper. Among
others, one of Berkeley’s most significant contributions to UNIX was vi, UNIX
full-screen editor.

Today, UNIX has evolved into UNIX 5.x. UNIX System 5 is intended to
be a practical production environment. From its small beginnings, UNIX to-
day is approximately 50,000 lines of C code and 5000 lines of Assembler. It
has not lost its appeal to programmers. For many of the same reasons that
UNIX and its ideal development environment are popular with programmers,
it is much less suitable for the naive end user.

Anyone at all familiar with UNIX is aware of its unusual and arcane com-

mands and messages. It is the job of the programmer to use those commands
to write “bulletproof’’ applications that shield the user from the complexities
of UNIX—while admitting the user to the full benefits of the UNIX timeshar-
ing application environment.

THE UNIX PROGRAMMING PHILOSOPHY

Despite what might be construed as scattershot development, there is a
definite and consistent philosophy behind UNIX, a philosophy which has been
with it since its inception by Kernighan and Ritchie. This philosophy can be
briefly described in two sentences.

1. Build small, reliable, and reusable software tools.
2. Use those tools to build larger and more complex modules.

A software tool is a set of code that performs one particular function. That
set of code, or tool, should be general enough to be useful from one application
to another, and simple enough to use that a user will employ it rather than
“reinvent the wheel”’ each time a new application is developed. UNIX is full
of software tools.

The UNIX commands themselves illustrate the concept of software tools.
For example, the command whodo (which tells who is doing what) is not an
original concept. The command is a combination and merging of who (which
tells who is logged on) and ps (which tells what processes are active and for
whom). The whodo command uses the software tools who and ps to build on.
Both who and ps solve general problems in ways that are simple to use. By
itself, whodo solves a different general problem and becomes a software tool
that stands alone.

UNIX was developed by programmers using the software tools concept.
One programmer would look at the work of another, use it, and build on it
to produce new results. C language encourages the use of small, reusable code
modules to produce large and complex programs.

As an example, the lines of C code shown in Fig. 1-1 represent the entire
structure of a complex C application. Because small, reusable pieces of code
called functions are used, even the main controlling module is simple to un-
derstand and use.

THE UNIX OPERATING ENVIRONMENT

There are three parts to the UNIX operating system—the kernel with its
file system, the shell, and the command set. These comprise the entirety of the
UNIX operating system. The kernel is the heart, providing process control
and performing the actual hardware/software interface. The file system con-
trols files throughout the UNIX system, allowing files to be created, deleted,
modified, located, and accessed. The shell, the removable and modifiable part
of the UNIX operating system, provides an interpreter for a programmable
command set. The command set is accessible by the programmer for easy use

/*help.c -- the main program for HELP software®*/
finclude "help.h"
main(argec, argv)

int argc;
char *argv;

/®#if arge=1 then give help desc#/
/#if arge=2 then help describes
a command#®/
/®*if arge>2 then help must parse
a command line®/

{
clrscrn (RW1,CL1,LSTRW,LSTCL); /%clear entire screen#/
helpmsk(); /*put help mask up*/
1f(argc:=1)
helpexp(); /%give help desc#/
else
opntxt(); /*open help text file#*/
if(arge==2)
{
cmdfind(); /*locate command in file®/
if(offset>0)
dishelp(); /®*display command help¥*/
}
else
parseln(); /®parse command line#®/
}

Fig. 1-1. Through the use of reusable functions and program modules, even complex applications can be developed us-
ing relatively few lines of code.

and maintenance of programs and operating system functions.

The kernel is the portion of the operating system that shields the user from
hardware and system software intricacies. The shell shields the user from the
intricacies of the kernel. The file system is the file-handling mechanism for
the kernel and the shell. With a few exceptions, the user can be shielded from
all of the UNIX oddities by application programs written to interface with the
kernel, shell, and file system. These applications should provide the user with
a friendly, simple, and easily understood operating environment.

The programmer can also be shielded from the kernel by using the shell
and its utilities—although the power of UNIX V comes from the programmer’s

