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PHYSICS OF DENSE MATTER

This book provides an introduction to
contemporary research in the physics of dense
matter, which refersito ‘matter in the -density
range 500—10' 7g/cm3. The book, concéntibtes
on the investigatiorf ifito the structure of mai_"c’ér
with an aim in deriving the equation of state
for matter at such densities. It is divided into
four chapters each'[, referring 0 a specific
density range, which is determined according
to the nature of physics involved. Presentation
is intended for the application of dense matter
physics to astrophysical problems, such as those
manifest in the supernova process and in the
structure of the neutron star. This book may be
used as a text book for graduate study in
astrophysigs as wel!l as a reference source for
research scientists in this field.

Chapter 1 deals with matter found
normally in white dwarf stars. The dominant
physics for matter at these densities is fairly
well known. This chapter serves to introduce
the nature of the physical problem and the
general method of attack. Many-body
technigues like the Hartree and Hartree-Fock
methods at zero and finite temperatures are
presented.

Chapter 2 reviews current methods
employed in the study of matter at subnuclear
densities. At these densities matter consists of
heavy nuclei. Nuclear physics and nuclear
models are needed to obtain an understan-
ding of its structure. We take as nearly as
possible the phenomenological approach so as
to maintain’¢lose contact with reality.

Chapter 3 studies matter at nuclear and
transnuclear densities. A great deal of efforts

{ Continued on back flap)



( Continued from front flap)

had been spent in the study of nuclear matter
in the past and several well-developed theories
had evolved over the years. We present here the
derivations of these theories and work out the
mathematical details involved in the
computations so as to provide a general back-
ground for readers to understand many of the
research articles published in the field of dense
matter physics employing these theories.

Chapter 4 is an extension of the
theoretical methods presented before to deal
with matter at ultradense matter. The relevant
topics are related to the formation of baryonic
matter, pion condensation and quark matter.
They are presented in a concise way.

The development of modern physics led
to a major advancement in the understanding of
the structure of matter. Conversely, a study of
the structure of matter provides a comprehen-
sive review of modern physics. The present
volume serves thus the dual purposes of being
an investigation into the structure of dense
matter and at the same time a review in modern
physics. As it turns out to be the case that the
complexity of the problems in dense matter
physics increases with increasing density.
Hence, by ordering the text according to
ascending densities the book develops its
theoretical tools progressively, and may
therefore be used as a text book in astro-
physics. Exercises are provided for individual
sections in the book. We have tried to make all
derivations explicitly clear so that the book
may be useful for self-learning or be called
upon as a reference to clear up obscure
derivations in journal articles. 1t is also intended
as a monograph containing sufficient reference
materials as to be useful to an active researcher
in the field.
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PREFACE

This book grew from lecture notes prepared for a ten-week summer short-course on
dense matter physics that I gave to a group of students and physicists at the Beijing
Normal University (China) in 1979. My aim was to introduce the field of dense matter
physics which saw rapid development in the past ten to fifteen years to an audience
who was not yet active in the field. I wanted to make the subject matter as simple and
yet as complete as [ could by concentrating on only a few well-developed topics, and 1
tried to spell out all details as clearly as possible. My hope was to provide enough back-
ground information on these topics that the participants of the short-course might be
prepared to comprehend the current research articles. In reality, 1 was far from
reaching my goal, and so in 1981 when I was approached by the Science Press to
publish the lecture notes, I decided to rewrite them. The final result comprises the
present book, which contains fewer topics but more detailed and complete description
of each.

This book is intended to prepare the readers for theoretical studies in dense
matter physics. It may also be used pedagogically as an introduction to the many-
body theory with emphasis on illustrative examples. Many mathematical operations
needed for this field are carried out in details, usually not in the most elegant way but
in a practitioner’s way, so that readers who are handicapped in background training
can still follow. Hopefully this book will enable more newcomers to enter into the
study of dense matter.

I wish to thank my colleagues at the Beijing Normal University for comments
and helpful suggestions on the contents of this book. Among them 1 wish to menticn
the following persons: Liang Shao-rong, Li Zong-wei, Gao Shang-hui, Ge Yun-zao and
Shi Tian-yi, whom I had the pleasure to work with during the preparation of this
book. Finally, I wish to thank Chen Chung-kuang of the Graduate School of the
Academy of Sciences for arranging with the Science Press for me to publish this book.

Y.C. Leung
N. Dartmouth, Massachusetts
May 4, 1983
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INTRODUCTION

In this book an attempt is made to provide a theoretical back-
ground for the study of the structure of very dense matter. The
densities under investigation are those between 104 to lO16 g/cm3
found in inert stellar objects like the white dwarfs and neutron
stars. Even though dense matter physics is also related closely to
contemporary investigations in heavy ion collisions and the Early
Universe, we shall make little reference to these issues. Instead
the emphasis is placed on the stellar objectes with the final aim
in deriving the appropriate equation of state for matter forming
them. Thus, not all aspects of dense matter physics are dealt with
but just the structure of dense matter.

All macroscopic solids on earth have average densities low
compared with the range of densities mentioned above. Their structures
are of electrostatic in origin. We shall say very little about them.
We begin our study at densities above lO4 g/cm3, for which electro-
static effects play minor roles. At these densities quantum effects
and nuclear interactions occupy the central roles. These are the
topics under review here.

The average density of our Sun is very low only of the order of
1.5 g/cm3. This is because energy coming from thermal nuclear reaction
prevents the collapse of matter to high density. Only the helium core
at the center of the Sun is reaching high density, but the core is
still small due to the youthfulness of our Sun,

As a star ages its helium core grows in size, The support of the
helium core is due to degenerate electrons, which in a dense state can
resist considerable pressure. The relationship between density and
pressure for a substance is called its equation of state., Once the
equation of state is known the mass and radius of the core can be

determined. The maximum stable size of such a core is known to be



given by the Chandrasekharlimit, which is about 1.2 solar mass. Chapter
1 deals with topics which are related to the inexrt core below the
Chandrasekhar 1limit, Matter in the core is composed of nuclei whose
atomic numbers are below that of iron, We refer to such substance

as subferrous matter., In Chapter 1 general many-body techniques

like the Hartree and Hartree-Fock methods are introduced. Relevant
concepts in dealing with degenerate fermions, particle interactions

and thermal effects are reviewed for the familiar case of the electron
gas. It serves to establish the notations and general method of
approach,

What then is the fate of a star whose helium core exceeds the
Chandrasekhar 1limit? A sequence of events would have followed leading
eventually to a possible supernova process. There are considerable
astrophysical interests in knowing the detailed nature of the super-
nova process for it will lead to an understanding of the chemical
composition of our Solar System. Although some of the basic mechanisms
of the supernova process are known, many more fine details are needed
to complete the picture

Chapter 2 makes an attempt to understand the physical properties
of matter during the process of a gravitational collapse. The results
shown in Chapter 2 are far from complete and undoubtedly a great deal
of progress in understanding matter at such densities will be made in
the near future. Chapter 2 serves to introduce the methods presently
employed to tackle such problems. In presenting these methods we
have not try to cover all possible approachs but concentrate on a
few which are phenomenological and show promise for future develop-
ment. We try to indicate their strength and weakness whenever we can.
Chapter 2 deals with matter at densities above those of the white
dwarf stars but below that found in atomic nuclei. It is comparable
to a gas of nuclei whose atomic numbers are above that of iron and
is referred to as subnuclear matter, The transformation in matter's
composition with density requires careful analysis., A definitive
knowledge of the process will be crucial to an understanding of the
atomic abundance of the Solar System.

Matter at subnuclear densities is quite compressible. It will



not halt a gravitational collapse once it is initiated. Stellar
objects involved in a collapse must necessarily pass through a stage
where their core densities are as high as matter densities found inside
atomic nuclei. Densities in atomic nuclei are quite similar and are
usually specified by a single density called the nuclear density.
Gravitational collapse will compress matter density well beyond the
nuclear density. The halting of a gravitational collapse is due to
the structure of matter at transnuclear densities, Consequently,
knowledge of matter at such densities is crucial to the understanding
of the supernova process. In Chapter 3 we introduce techniques in
nuclear physics appropriate to the study of matter at approximately
the nuclear density. The purpose is to provide the general background
needed to understand many of the research articles published in this
field. We try to work out all the mathematical details involved in
the theory, so that newcomers to this field will not be hindered by
obscure derivations. We leave out however philosophical comments on
such theory since they can be found in severalgood review articles
quoted at the end of each section. The historical sketch on the deve-
lopment of the theory is also left out., 1In Section 14, we introduce
relativistic models which allows the extension of nuclear physics
techniques to deal with matter at densities above nuclear density.
Chapter 3 covers a density range terminating at about 1016 g/cm3.
Matter at densities above lO16 g/cm3 is called ultradense matter.
Physical processes not commonly found in nuclear matter will appear in
ultradense matter. The discussion of these processes composes the
subject matter of Chapter 4. They are listed under the headings of
baryonic matter, pion condensation and quark matter. Recognition of
these processes is largely theoretical. We try to present these issues
in a unified way without having to introduce drastically new devices.
Since the tone of this book is highly phenomenological, many of the
sophisticated diagrammatic techniques have been neglected, and there-~
fore it is impossible to give a full treatment of some of the topics.
There are three appendices to this book. Appendix A compiles
the physical constants and astronomical data which will be useful for

the subject matter. Appendix B presents the mathematical functions



employed in the text, Appendix C is a compendium of the equation
of state for matter at various densities. It represents our present
day knowledge of such matter, Exercises are provided for each section

and are given at the end of the book,



CHAPTER 1

. 8
Regime I: 500 < p < 10 q/cm3. Subferrous Matter.,

1. Variational Methods

The study of the physical properties of matter by means of theo-
retical methods comes under a formulation generally referred to as the
many-body problem, in which matter is assumed to consist of a number
of basic constituents called particles obeying known physical laws.
all physical properties of matter are to be deduced from the dynamics
of these constituents. The quantum mechanical formulation of the many-
body problem is based on a generalization of the rather successful
Schrodinger equation formulation of the one- and two-body problems.

Thus, we write for a N-body system the following equation:
HY = EVY (1.1

>
where ¥ is a function of the 3N spatial coordinates xi, and the Hamil-

tonian H is given by:

N MZ 5 N N
H = ) - 5= Vi + ) V(x) + Zv(x—x ) (1.2)
. 2m i o i b
= i=1 i,3=1
i<j

which consists of the kinetic energy terms and the interaction terms.
The particles are assumed to interact with the background through V(;i)
and pairwise through v(xl—x Y. In a quantum mechanical formulation of
particle dynamics, each particle is provided with its own spatial co-
ordinates, and hence there are 3N coordinates. Interactions between
two particles are prescribed by means of v(;iQ;.), which couples their
coordinates. Without v(x —x y, (1.1) will be separable into N sets of
independent coordinates and all particles are then free from each
other. We have in mind here a system of identical particles and there
will be the same potential functions V(;i) and V(;i;;j) for all parti-
cles. For the general case additional subscripts for v and v will be

needed. These subscripts are suppressed here for clarity.



It is clearly a very ambitious task to solve for ¥ from (1.1),.
Furthermore, when the system represents a macroscopic system, the deter-
mination of ¥ is not only impossible but not necessary. For such a
system, the process of a physical measurement samples some average
characteristics of the system, and this is far from a determination
of the many-body wave function Y. However, the concept of a wave
function is still useful as a vehicle in establishing relations among
physical parameters. Henceforth, we shall attack the problem in a
manner consistent with an approximate solution of the many-body
problem (1.1).

One common strategy in finding the ground state energy, or the
lowest eigenvalue of (1.1), is by means of the variational method. The
variational principle tells us that the expectation value of the Hamil-
tonian with an arbitrary function must be at least as great as the
lowest expectation value of the Hamiltonian. One therefore specifies
a class of trial wave functions which are presumed variable functionally
from one to the other. The variational method then provides the neces-
sary equations for the selection of the one trial wave function which
gives the lowest expectation value of the Hamiltonian within the class.
Such a trial wave function may be a useful approximation to the true
ground state wave function if the class is properly chosen, and its
expectation value would be a close upper bound of the ground state
energy of the system. Different classes of trial wave functions may
also be appraised by comparing their lowest expectation values obtained.
We shall make use of three classes of trial wave functions. They shall
be designated as (1) Hartree, (2) Hartree-Fock, and (3) Jastrow trial
wave functions.

After the approximate ground state wave function is found for the
variational method. The excited state wave functions may be established
successively. The first excited state wave function must be orthogonal
to the ground state wave function and at the same time yielding the
next lowest expectation value of the Hamiltonian. The second excited
state wave function would again be orthogonal to the first two with the
next lowest eigenvalue, and so forth. We shall be dealing mainly with

the ground state of a system.



A N-particle Hartree trial wave function consists of a product of

N single~particle wave functions:
¥ o= ¢ (k) ¢ (k) (x
= 9 D b,0k) L e (k) (1.3)

The single-particle wave functions ¢i are individually normalized:

d3 * > >
s X ¢i(x) ¢i(x) = 1, (1.4)
so that,
N *

Jav v vy = 1, (1.5)
where

N 3 3 3

dv = d xl d x2 P o | xN . (1.6)

Let us denote the expectation value of the Hamiltonian by:

N *
<H> = [ dv ¥ HY. (1.7)

A variation in the trial wave function ¥: ¥ » ¥ + 8¥ gives rise to a
variation in <H> : <H> =+ <H> + 8<H> ., Since Y is complex, ¥ and W*
may be varied independently. The variation should however preserve the
normalization conditions (1.5). This can be accomplished by means of
the method of Lagrange multiplier. The variational condition to be
satisfied by the trial wave function having the lowest expectation

value of the Hamiltonian is:
N *
§{<H>+ Xx/fdavyY ¥} = 0, (1.8)

where A is the Lagrange multiplier,

Since the single-particle wave functions are normalized, <H> is

given by:
2
cHs =y saxe -V hv e 4
i
+ 1 radx &y 6L () ¢;(§) TN AN (1.9)

i<j
* * * * i A
Let us consider variations of ¥ : ¥ > ¥ + &Y by varying just one
of the single-particle wave functions at a time, such as:
* * 5 * *
= . e e e e . 1.10
Y LICIP RIS o ) ( )
The variational condition,

A {sY*r (H+A) Y= o0 (1.11)



simplifies to:

2 N
radx sq;;&) { - g—ﬁvz sV + ) fady )

-+ > > ->
Ay) vix-y) ¢, (y) +
522 ] ]
N >
+ (A +] b+ ] .. x = 0, (1.12)
) l<2<.lj 1
where, J J
b, = [ dxé. X (-K2vZ+v@Y 4.3, (1.13)
j j S j
and,
_ fd3 d3 * * > > > > -> 1
s = x d7y ¢, (x) ¢j(y) vix-y) ¢, (x) ¢j(y) . (1.14)

since 6¢I is an arbitrary complex function, the vanishing of the inte-

gral can only be satisfied by the vanishing of the integrand. Thus, we
obtain a Hartree equation for the single-particle wave function labelled
by subscript 1. This may be generalized for arbitrary particle label 1i.

The equations obtained are the Hartree equations, one for each particle

wave function:

2 N
2 3 * > > - H > (1.15
=57 v e ] sy oL HIEIODY 0, G = e 6 G0 )
J=1
where, (374)
B N N
i = - (X + ‘z bj + Z Clj )
j=1 £,3=1
(3#1) (2<3)
(2 ,3#1)

are the Hartree single-particle energies. The approximate ground state
energy of the system, denoted again by E, is given by the expectation

value of the Hamiltonian:

N 2
E =<H> ='Z ra’x ¢I(§) {- %—5 v+ v} ¢i(§) +
i=1
N 3 3 * > * > > > > >
+ ] a7k a7y ¢, (%) $57) vx-y) ¢, (x) ¢,
i<j

N
3 * > * > > > > >
=] - T sk &y el 6l vER) 6 ) b,
i=1 i<3 J
(1.16)
Here we see that the total energy of the system is given by the
sum of the Hartree single-particle energies minus the interaction

energies, which have been doubly counted in the summation of the Hartree



