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Preface

The problem of solving nonlinear equations and systems of equations ranks
among the most significant in the theory and practice, not only of applied
mathematics but also of many branches of engineering sciences, physics, com-
puter science, astronomy, finance, and so on. A glance at the bibliography
and the list of great mathematicians who have worked on this topic points
to a high level of contemporary interest. Although the rapid development
of digital computers led to the effective implementation of many numerical
methods, in practical realization, it is necessary to solve various problems
such as computational efficiency based on the total central processor unit
time, the construction of iterative methods which possess a fast convergence
in the presence of multiplicity (or clusters) of a desired solution, the control
of rounding errors, information about error bounds of obtained approximate
solution, stating computationally verifiable initial conditions that ensure a
safe convergence, etc. It is the solution of these challenging problems that
was the principal motivation for the present study.

In this book, we are mainly concerned with the statement and study of
initial conditions that provide the guaranteed convergence of an iterative
method for solving equations of the form f(z) = 0. The traditional approach
to this problem is mainly based on asymptotic convergence analysis using
some strong hypotheses on differentiability and derivative bounds in a rather
wide domain. This kind of conditions often involves some unknown param-
eters as constants, or even desired roots of equation in the estimation pro-
cedure. Such results are most frequently of theoretical importance and they
provide only a qualitative description of the convergence property. The first
results dealing with the computationally verifiable domain of convergence
were obtained by Smale (1981), Smale (1986), Shub and Smale (1985), and
Kim (1985). This approach, often referred to as “point estimation theory,”
treats convergence conditions and the domain of convergence in solving an
equation f(z) = 0 using only the information of f at the initial point z(?).

In 1981, Smale introduced the concept of an approrimate zero as an initial
point which provides the safe convergence of Newton’s method. Later, in 1986,
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viii Preface

he considered the convergence of Newton’s method from data at a single
point. X. Wang and Han (1989) and D. Wang and Zhao (1995) obtained
some improved results. The study in this field was extended by Kim (1988)
and Curry (1989) to some higher-order iterative methods including Euler’s
method and Halley’s method, and by Chen (1989), who dealt with the general
Newton-like quadratically convergent iterative algorithms. A short review of
these results is given in the first part of Chap. 2. Wang-Zhao’s improvement of
Smale’s convergence theorem and an interesting application to the Durand-
Kerner method for the simultaneous determination of polynomial zeros are
presented in the second part of Chap. 2.

The main aim of this book is to state such quantitative initial conditions
for predicting the immediate appearance of the guaranteed and fast conver-
gence of the considered numerical algorithm. Special attention is paid to the
convergence analysis of iterative methods for the simultaneous determination
of the zeros of algebraic polynomials. However, the problem of the choice of
initial approximations which ensure a safe convergence is a very difficult one
and it cannot be solved in a satisfactory way in general, not even in the case
of simple functions, such as algebraic polynomials. In 1995, the author of this
book and his contributors developed two procedures to state initial conditions
for the safe convergence of simultaneous methods for finding polynomial ze-
ros. The results were based on suitable localization theorems for polynomial
zeros and the convergence of error sequences. Chapter 3 is devoted to initial
conditions for the guaranteed convergence of most frequently used iterative
methods for the simultaneous approximations of all simple zeros of algebraic
polynomials. These conditions depend only on the coefficients of a given poly-
nomial P(z) = z" +a,_12"" ! +--- +a,z + ag of degree n and the vector of
initial approximations z(®) = (zgo), . ,zr(,o)). In particular, some efficient a
posteriori error bound methods that produce disks containing the sought ze-
ros and require fewer numerical operations than the corresponding ordinary
interval methods are considered in the last part of Chap. 3.

The new results presented in Chaps. 4 and 5 are concerned with the higher-
order families of methods for the simultaneous determination of complex ze-
ros. These methods are based on the iterative formula of Hansen—Patrick’s
type for finding a single zero. As in Chap. 3, we state computationally verifi-
able initial conditions that guarantee the convergence of the presented meth-
ods. Initial conditions ensuring convergence of the corresponding iterative
methods for the inclusion of polynomial zeros are established in Chap. 5.
Convergence behavior of the considered methods is illustrated by numerical
examples.

I wish to thank Professor C. Carstensen of Humboldt University in Berlin.
Our joint work (Numer. Math. 1995) had a stimulating impact on the de-
velopment of the basic ideas for ‘obtaining some results given in this book.
I am grateful to Professor S. Smale, the founder of the point estimation the-
ory, who drew my attention to his pioneering work. I am also thankful to
my contributors and coauthors of joint papers Professor T. Sakurai of the
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University of Tsukuba, Professor D. Herceg of the University of Novi Sad,
Professor S. Ili¢, Dr. L. Rancié¢, Dr. D. Milosevi¢, and Professor D. Dordevié
of the University of Ni§ for numerous important suggestions and valuable
comments. What I especially wish to acknowledge is the assistance and ex-
ceptional efforts of Sonja Dix-Stojanovi¢ and Aleksandra Milosevi¢ who read
the complete manuscript. Many small errors were eliminated in this manner.

My principal thanks, however, go to my wife Professor Ljiljana Petkovi¢ for
her never-failing support, encouragement, and permanent discussions during
the preparation of the manuscript.

University of Nis, Miodrag S. Petkovié
Faculty of Electronic Engineering,

Department of Mathematics,

Nis 18000, Serbia

December 2007
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Chapter 1
Basic Concepts

In this chapter, we give some basic concepts and properties, necessary in our
investigation of convergence characteristics of root finding methods. Most of
these methods are reviewed in Sect. 1.1, together with some historical notes
and various principles for their construction. Section 1.2 contains several re-
sults concerning the localization of polynomial zeros. We restrict ourselves to
inclusion disks in the complex plane that contain complex zeros of a given
polynomial. In Sect. 1.3, we give the basic properties and operations of cir-
cular complex interval arithmetic, prerequisite to a careful analysis of the
bounds of complex quantities that appear in our study and the construction
of inclusion methods described in Sect. 5.3.

1.1 Simultaneous Methods for Finding Polynomial Zeros

The problem of determining the zeros of a given polynomial is one of the first
nonlinear problems that mathematicians meet in their research and practice.
Although this problem seems to be simple at first sight, a perfect algorithm
for finding polynomial zgros has not been established yet, in spite of numerous
algorithms developed during the last 40 years. Each numerical method pos-
sesses its own advantages and disadvantages, so that it is not easy to choose
the “best” method for a given polynomial equation. Let us emphasize that
the rapid development of computing machines implies that many algorithms,
tormerly of academic interest only, become feasible in practice.

Most algorithms calculate only one zero at a time. In cases when all zeros
are needed, these algorithms usually work serially as follows: when a zero has
been computed to sufficient accuracy, then the corresponding linear factor is
removed from the polynomial by the Horner scheme and the process is applied
again to determine a zero of the “deflated” polynomial whose degree is now
lowered by one. This is the method of successive deflations. If a great accuracy
of desired approximations to the zeros is required, the polynomial obtained

M. Petkovi¢. Point Estimation of Root Finding Methods. Lecture Notes 1
in Mathematies 1933,
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2 1 Basic Concepts

after divisions by the previously calculated (inaccurate) linear factors may be
falsified to an extent which makes the remaining approximate zeros erroneous.
This is a flaw of the method of successive removal of linear factors. The
next disadvantage appears in those situations where it is sufficient to find
approximations with only a few significant digits. But, as mentioned above,
the method of deflation requires approximations of great accuracy. Besides,
this procedure cannot ensure that the zeros are determined in increasing
order of magnitude (see Wilkinson [190]). which is an additional shortcoming
of deflation.

The above difficulties can be overcome in many situations by approximat-
ing all zeros simultaneously. Various approaches to these procedures have
been developed: the method of search and exclusion (Henrici [57. Sect. 6.11]).
methods based on the fixed point relations (e.g.. Borsch-Supan [9].[10].
Ehrlich [33], X. Wang and Zheng [182|, Gargantini [47], [48]). ¢d algo-
rithm (Henrici [57, Sect. 7.6]), a globally convergent algorithm that is imple-
mented interactively (Farmer and Loizou [39]), tridiagonal matrix method
(Brugnano and Trigiante [12], Schmeisser [159]), companion matrix methods
(Smith [168], Niu and Sakurai [93], Fiedler [40], Malek and Vaillancourt [86]),
methods based on the application of root finders to a suitable function ([69],
(124], [146], [156]), methods which use rational approximations (Carstensen
and Sakurai [18], Sakurai et al. [157], [158]), and others (see, for instance,
Wilf [189], Pasquini and Trigiante [103], Jankins and Traub [67], Farmer
and Loizou [37], [38]). See also Pan’s survey paper [101] and references cited
therein.

Part I: Simultaneous Methods Based on Fixed Point Relations

In this book, we deal mainly with the simultaneous methods based on fixed
point relations (FPR). Such an approach generates algorithms with very fast
convergence in complex “point” arithmetic as well as in complex interval
arithmetic using the following procedure.

Let (1. ..., Cn be the zeros of a given monic (normalized. highest coefficient
1) polynomial P(z) =z" + a,_12" ' + --- + a,z + ag of degree n and let
Z1...., 2 be their respective approximations. We consider two types of FPR

(i = Fyl{2iy - vo s 201, 800Gt Bips v oo 2 )5 (1.1)
CGi=F>(Cis-v s Gim1s 20y Gig1s - -5 G, (1.2)

wherei € I, := {1,...,n}. Now we give several FPR which have been the ba-
sis for the construction of the most frequently used iterative methods for the
simultaneous determination of polynomial zeros in complex arithmetic and
complex interval arithmetic. In the latter development, we will frequently use
Weierstrass’ correction Wi(z;) = P(z;)/ [1;:(zi — 2;) (i € I,). Sometimes,
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we will write WW; instead of 1W;(z;). In addition to the references given behind
the type of FPR, the derivation of these FPR may be found in the book [109]
of M. Petkovié.

For brevity, we will sometimes write

n n
E z; instead of E z; and H.I‘J instead of H Ejs
VE] J=1 B3} i=1
JFi Ik JFi o

Ezample 1.1. The Weierstrass-like FPR [109]:

st Gagsy (F)

[Ie-¢)

i=1
FE=

Equation (F;) follows from the factorization P(z) = H(: — i)y =
j=1

z=¢) [Jz-¢)

J#

Example 1.2. The Newton-like FPR [50], [106]:

=z — — ieI,). Fs
¢ ER (i € L) (F»)
P(z) peri Y
J#
Applying the logarithmic derivative to P(z) = | | (z — ¢;), the identity
j=1
/(. n
I i ) .2 (1.3)
P(z) S

is obtained. Finding z — (; from (1.3), we get (F3).
Example 1.3. The Borsch-Supan-like FPR [11], [107]:

G=z-—M el (Fy)

o Z‘ Civfjlj

I#1
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Lagrange’s interpolation applied to the distinct points z1,...,2, (# G, 1 €
I,) gives

P(z) =W, HZ—~J)+H

S
/_\
3
™

W/'.
Z i 11]. (1.4)
J=1 =1 o Zj

JF J#i

Taking z = (; and solving the obtained equation in ¢; — z;, from (1.4) we
derive (F3).

Ezample 1.4. The square root FPR (47|, [106]:

Gi=z— L 73 (i€ L,). (Fy)
P'(2)? — P(z)P"(z) B = 1
Py Mot
Differentiation of the identity (1.3) yields
B Pla)yt P'(2)2— P(2)P"(z) _ - 1 g
(7&) == Per “Lomgr P

wherefrom we extract the term (z — ¢;)? and derive (F}).
FEzxample 1.5. The Halley-like FPR [109], [182]:

Ci:z_ P/( ) P”( ) P ) ln § (FS)
P(z) 2P'(2) 2P'(2) (,Za-@) +Z _CJ }

Equation (F5) can be obtained by substituting the sums (1.3) and (1.5) in
the relation po pr ) p
4 z FAR
Pz ( ( )) +( ( )).
P(z2) P(z) P(z)

Actually, (F5) is a special case of a general fixed point relation derived by X.
Wang and Zheng [182] by the use of Bell’s polynomials (see Comment (Ms)).

Substituting the exact zeros (y,...,(, by their respective approximations

- TR 2, and putting z = z;, from (1.1) and (1.2), we obtain iterative
schemes

fi,‘ :Fl(zl....,:n) (iEI,z), (16)

Zi :Fg(zl,...,z") (iEIn). (17)

in (ordinary) complex arithmetic, where Z; is a new approximation to the
zero (;. Another approach consisting of the substitution of the zeros on the
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right side of (1.1) and (1.2) by their inclusion disks enables the construction
of interval methods in circular complex interval arithmetic (see Sects.1.3

and 5.3).

For illustration, we list below the corresponding simultaneous iterative
methods based on the FPR given in Examples 1.1-1.5 and having the form

(1.6) or (1.7).

The Durand—Kerner’s or Weierstrass’ method [1], [30], [32], [72], [148],

[187], order 2:

(1 € I,).

The Ehrlich—Aberth’s method (1], [31], [33], [85], order 3:

1
Zi =z — P’(~ ) - (L € In)
P(Z,‘ - 12:1: 25— ZJ'
I#
The Borsch-Supan’s method [10], [95], order 3:
W; .
éi::l_? (26111)-
W,
1+
1=1 < Zj
J#T
- P®)(2)
Let us introduce ;. ; = Pz (k=1,2). Then

}')I(qu).2 = P(Z,’)P”(Z;)
P(z)? .

The square root method [47], [142], order 4:

< 1 .
2=z — 172 (i € IL,).
- 1
[53" B Mo >}
i=1 t J
1F1
The Halley-like or Wang—-Zheng’s method [182], order 4:
B B 1
P(z) S ? B 1
Fz) - Y —
2P’(21) ; Zi— Zj ; (Z,' = :_,’)2
J# JF

(M)

(Ms3)

(i € I,),

(Ms)
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where Pley P
Zi) = = = i 18
is the denominator of Halley’s correction
H(z)=Hi= =~ (1.9)
2 2 f(qu) 8] .

RS2
I
&
!
=
™
3
LA
|
2

(1.10)

Comment (M;j). Formula (M;) has been rediscovered several times (see
Durand [32], Dochev [30], Borsch-Supan [9], Kerner [72], M. Presi¢ [147],
S. B. Presi¢ [149]) and it has been derived in various ways. But we emphasize
the little known fact that this formula was known seven decades ago. In his
lecture on the session of Konig, Academy of Science, held on 17 December
1891, Weierstrass communicated a new constructive proof of the fundamental
theorem of algebra (printed in [187]). In this proof, Weierstrass used the
sequences of numerical entries {a,(,’\)} (v=1,...,n, A=0,1,2,...) defined
successively by (eq. (29) in Weierstrass’ work [187])

P(a
S i )
H“ (a‘l/ - au)
P(al)
a)=a,—-=——2— (v=1,...,n, u2v),
Y (@ - a) (1.11)
" = a — P(au)
v — Y H (a,, R (l")
u \Hv i
\ and so on
where P is a polynomial of degree n with the zeros z1,...,z,.

The proof of the quadratic convergence of the iterative method (M) is as-
cribed to Dochev [30], although his proof is not quite precise. The works [82],
[148], [162] offer a more precise proof. But it seems that the quadratic con-
vergence of the sequence (1.11) was known to Weierstrass. Namely, for the

maximal absolute differences () = max |a1(,)‘) —x,|, he derived the following

1<v<n
inequality (eq. (32) in [187])
A
N < (€M) A=1,2,..),

which points to the quadratic convergence of the sequences {a,(f\)}.
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Note that Weierstrass did not use (1.11) for the numerical calculation
of polynomial zeros. Durand [32] and Dochev [30] were the first to apply
the iterative formula (A;) in practice for the simultaneous approximation of
polynomial zeros.

In 1966, Kerner [72] proved that (M) is, in fact, Newton’s method Z = z—
F’(z)7'F(z) for solving nonlinear systems applied to the system of nonlinear
equations (known as Viete's formulae)

(=D *er(z1,.. ., 20) —ax =0, (k=1,...,n), (1.12)

where ¢ denotes the kth elementary symmetric function:

Yk = E : iy Ege T R

1<j1<je<n

Since Newton’s method is quadratically convergent, it follows immediately
that the iterative method (M) also has quadratic convergence.

The iterative method (M) shares with the Halley’s method (1.10) the dis-
tinction of being the most frequently rediscovered method in the literature.
From the fact that many authors dealt with the formula (M), the itera-
tive method (M) is called Weierstrass’, Durand-Kerner’s, or Weierstrass—
Dochev’s method; other combinations also appear in literature.

According to a great number of numerical experiments, many authors
have conjectured that the method (M;) possesses a global convergence in
practice for almost all starting vectors 2@ = (z\”, ... z{")), assuming that
the components of z(?) are disjoint. This was proved for n = 2 (see [52], [64])
and for the cubic polynomial P(z) = 23 (Yamagishi [64]), but this is an open
problem still for a general n > 3.

Let us note that the method (Af;) works well even for the case where the
zeros of P are not necessarily distinct (see Fraigniaud [43], Miyakoda [89].
Pasquini and Trigiante [103], Carstensen [15], Kyurkchiev [81], Yamamoto,
Furakane, and Nogura [193], Kanno, Kyurkchiev, and Yamamoto [69],
Yamamoto, Kanno, and Atanassova [194], etc.). For these excellent properties
and great computational efficiency, this method is one of the most frequently
used simultaneous methods for determining polynomial zeros (see [109,
Chap. 6]).

Comment (Ms3). Although the method (Ms) was first suggested by
Maehly [85] in 1954 for a refinement of the Newton’s method and used
by Borsch-Supan [9] in finding a posteriori error bounds for the zeros of
polynomials, it is more often referred to as the Ehrlich-Aberth’s method.
Ehrlich [33] proved the cubic convergence of this method and Aberth [1]
gave important contribution in its practical realization. The method (M)
can also be derived from the Halley’s method (1.10) using the approximation
(see (1.49))



