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Preface

This book has been written to assist non-specialists in numerical analysis and seeks
to show how relatively advanced and sophisticated numerical analysis can be carried
out using low-cost microcomputers. By non-specialist we mean those who use
numerical methods but do not necessarily require a detailed theoretical knowledge
of the subject or need to solve very large or complex problems. However, even the
non-specialist must have a clear understanding of numerical methods and theirrange
of application if procedures and the programs that implement them are to be used
successfully. The non-specialist will include many undergraduate and postgraduate
students, practising engineers and scientists and even sixth formers undertaking
project work. They will have easy access to microcomputers and in this they are
fortunate compared with their predecessors who, before the advent of the microcom-
puter, were forced to gain experience of numerical procedures by undertaking lengthy
computation by hand.

Learning numerical methods with a microcomputer gives the user the ability to
try many problems and to explore the range of applicability of algorithms. This book
includes more than sixty-five BASIC programs suitable for use on microcomputers
and the clarity of the description of the numerical procedures is enhanced by
illustrating them with the numerical output from these programs. In addition the
programs allow the user to learn from experience by experimentation and to this end
a selection of problems is included in each chapter.

The overall structure of the book is as follows. Chapter 1 provides an elementary
introduction to relevant aspects of computers and computing and to some of the more
widely applied concepts of numerical analysis. Chapters 2 to 10 are concerned with
the development of procedures and programs to solve a wide range of numerical
problems. We rarely consider procedures that were developed for hand calculation,
nor those which can only be implemented realistically on a main-frame computer.
Emphasis is placed on the practical use of procedures and when they are not
developed with full mathematical rigour, references are given. Finally in Chapter 11
we compare the performance, in terms of speed and accuracy, of several popular
microcomputers and we use them to solve a selection of problems taken from
Chapters 2 to 10. The mathematical prerequisites for a full understanding of the text
are limited to a knowledge of simple algebra and trigonometry, basic differential and
integral calculus including Taylor’s series and the mean-value theorem, an under-
standing of the notation and rules for the manipulation of vectors and matrices and
the algebra of complex numbers.



xii Preface

Choosing a programming language for this text was not easy. Pascal and BASIC
were the most obvious candidates, FORTRAN was rejected because it is not widely
used on microcomputers. Pascal has the clear advantage of being a well structured
language. In contrast, BASIC is not standardised and some versions lack important
features such as procedures and the if-then-else construct, leading to an over use of
goto statements. However, a feature of many numerical algorithms that should not be
overlooked is that their relative simplicity allows them to be programmed without
loss of structural clarity using a restricted set of programming constructs. The
advantages of BASIC are that it is still the most widely available programming
language on microcomputers and is almost certainly the most widely known, used
and understood. Consequently, after careful consideration, we have chosen to present
programs in BASIC.

The programs given are written so that they will work satisfactorily, with very
little modification, in most versions of BASIC and on most microcomputers. The
programs could be developed by refining their structure and also their output
presentation but these improvements would be at the expense of portability between
machines. The robustness of the programs could be enhanced and data validation
included but this would make them longer and more intricate and such refinements
may mask the essential features of the numerical procedure. It should be relatively
easy for readers to employ the facilities of their microcomputer to modify the
programs to meet their particular requirements. It should be noted that whilst every
effort has been made to check the correctness of programs we cannot guarantee that
all the programs are error free. However, many of the programs have been used by
the authors and their students for several years and are well and truly tested. Itis also
important to emphasise that even error free programs must be used with care and the
reader must decide whether the application of a program to a particular problem is
appropriate. All the programs have been run on the Apple Macintosh and the BBC
microcomputers and the vast majority have also been run on the IBM PC-AT. In
addition, many programs have been tested on other machines.

Finally the authors wish to acknowledge the help of their colleagues Gordon
Betteley, Dr Barry Martin and Dr David Wilson, and also the help and patience of
the staff of Ellis Horwood.

George Lindfield
John Penny

Aston University
September 1988.
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1

Using microcomputers to solve

numerical problems

1.1 THE IMPACT OF THE MICROCOMPUTER

In almost every field of computation, data processing and information technology the
microcomputer, as a consequence of its flexibility, user-friendliness, low cost and
wide availability is becoming increasingly competitive with the large, multi-user,
mainframe computer. Whilst the microcomputer cannot equal the performance of a
modern mainframe computer in computing power, the modern microcomputer far
exceeds the performance of many of the early large mainframe computers. An
interesting illustration of this was described by Sinnott (1984). He reported that a
series of lengthy and complex astronomical calculations (to determine the
ephemerides of the five outer planets of the Solar system for a period of 400 years)
was carried out in 1948 using the large IBM SSEC and took 120 hours. In 1984 an
amateur astronomer repeated the calculations using his TRS80 microcomputer and
the process took 10 hours 25 minutes. It was also estimated that it would take an
unaided human calculator, working 40 hours a week, approximately 80 years to
perform the same calculations. Such anecdotes are interesting in giving a feel for
the rapid improvement in computer technology. The real point of this illustration
is that in 1948 (or, indeed, in 1975) only the professional scientist and engineer had
access to significant computing power. Today any school, college or university, any
student, amateur scientist or computer hobbyist can have access to significant
computing power for the expenditure of a few hundred pounds.

The microcomputer plays an increasingly important role in education and
industry and much of the work that was once done on mainframe computers has now
been transferred to the microcomputer. One area where both microcomputers and
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mainframe computers have been used for many years is for the numerical solution
and analysis of a wide range of mathematical problems. The large mainframe
computer remains an essential tool for solving extremely large and complex
problems despite the astonishing developments in microcomputing. However, in
general users will prefer to apply a microcomputer to a numerical problem if the
microcomputer memory capacity allows and if accuracy and speed of calculation are
not critical factors. The microcomputer user is more in control of the computing
environment than when competing with many other users for the resources of a
mainframe computer. Furthermore the fast speed of operation of the mainframe
computer may not be utilised during periods of high demand because the user may
have to wait a considerable time before being able to access the required part of
the system. Despite these comments, care must be taken to avoid the indiscriminate
and uncritical use of the microcomputer and a judgement must be made based on
the requirements of the particular problem. The estimation of memory requirement
is normally fairly simple but the determination of the accuracy required from the
system is more difficult. For some classes of numerical problem the accuracy with
which the solution may be obtained is notrelated in any simple way to the accuracy
with which the computer stores and operates on numerical values. This problem
receives special consideration in later sections of this book.

The performance of a specific microcomputer is related to the hardware design
and the software used by the machine. The speed of execution of programs depends
on a number of factors, the most important of which are the maximum speed rating
of the microprocessor chip and the form of the implementation of the computer
language being used. The accuracy that can be obtained in performing computations
is primarily controlled by the software implementation and in some implementations
itis possible to trade off computational speed and effective memory size forincreased
accuracy.

The effectiveness of the microcomputer has been considerably enhanced by the
dramatic increase in the memory that can be economically be incorporated into their
design. At the beginning of the 1980s most microcomputers had memory capacities
between 16k and 48k. By the mid-1980s memories of 512k were common and by
1987 memory capacities of 1 megabyte (1024k) were available. However, the
memory accessible to programs and data may be more limited than at first appears
because some memory may be used by the operating system and other software
or because of poor software design. A simple one line program can be written to find
the memory available and such a program has been used to obtain the results for a
range of microcomputers as shown in Table 1.1.1.

The hardware, the software and the design philosophy of microcomputers
continues to develop rapidly. One exciting design development which is having, and
will continue to have, an impact on the implementation of numerical algorithms is the
introduction of parallel processors, that is computers that can execute several
elementary arithmetic operations simultaneously. By redesigning numerical
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Table 1.1.1. Maximum number of elements that can be used in an integer (%),
real or double precision (#) arrays in the computer indicated. The memory
accessed is often dependent on the version of BASIC used.

Maximum number of elements n
Microcomputer | DIM A%(n) |IDIM A(n)  |DIM A*(n)
BBC (32Kk) 6329 5062 _
Amstrad CP464| 21753 8700 _
Mac (512k) 159000 82350 37850
Apricot (256k) | 31117 15558 7778
CcBM 64 19442 7776 _
Apple 18161 7264 _
Amstrad 30986 15492 7745
(PC1512)

algorithms so that they can make use of parallel processing machines, major impro-
vements in the speed of execution of the numerical process can be obtained.

1.2 COMPUTER LANGUAGES ON THE MICROCOMPUTER

A wide range of computer languages have now been implemented on
microcomputers and the number of implementations continues to grow. The
purpose of these languages is to allow the user to interact as easily as possible with
the computer and languages have been developed to serve the particular needs of
different users. The language which is most widely used on microcomputers is
BASIC. Other languages which are also available on microcomputers are
FORTRAN, COBOL, Pascal, C, PILOT, LOGO and specialised languages such
as APL, LISP and Prolog. These languages each have their special features which
make them suitable for particular tasks. FORTRAN, BASIC, Pascal, C and APL
may be used for solving scientific problems but full implementations of FORTRAN,
Pascal, C and APL are available only on the more powerful microcomputers.
FORTRAN was developed specifically to solve scientific problems, APL was
designed to solve problems which involved extensive manipulation of matrices and
Pascal and C are more general-purpose languages. COBOL is a business-orientated
language which is suitable for handling large file structures containing numeric and
non-numeric data. PILOT and LOGO are specialised languages, PILOT allows the
microcomputer to be used efficiently for the preparation of educational material and
LOGO is a graphics language. LISP and Prolog are used for research into artificial
intelligence and symbolic manipulation.

All these languages are called high-level languages. High-level languages allow
the user to solve a problem by writing computer executable statements which are
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close to natural language statements. Clearly this simplifies the task of translating
the problem-solving algorithm into a form that can be executed by the computer.
Within the computer the instructions and data are stored and a procedure is required
to translate from the high-level language to a machine-executable form, called
machine code. This translation is achieved by using a special program known as
a compiler or an interpreter. These compilers or interpreters are produced by
software companies for a wide range of microcomputers. They may be supplied
either on floppy discs or in ROM permanently resident within the computer. The
main difference between the compiler and the interpreter is that while the compiler
provides a complete and, after correction, executable machine code program the
interpreter translates each statement of the high-level program as it is encountered.
Consequently, since the compiled version of the program can be executed directly
without need for any further translation, it should run significantly faster than an
interpreted program where each statement is translated each time it is accessed.

The language used for the programs in this book is BASIC, the letters of which
are an acronym for Beginner’s All-purpose Symbolic Instruction Code. This high-
level language is the most widely available on microcomputers and, because of
its relatively simple structure, provides an easy introduction to programming for
the microcomputer user. The language does have significant disadvantages
because it is not well structured. This means that, because of its lack of some
important programming features, programs written in BASIC may not have a clear
logical structure and consequently may be difficult to understand and correct. This
presents major problems for large programs, but programs to solve problems in
numerical methods are often surprisingly short and consequently BASIC is usually
a very adequate language for implementing these techniques.

The statement that BASIC is not well structured must be qualified because
recently many new dialects of BASIC have become available that have features
which allow structured programming. More recent versions of Microsoft BASIC,
Hewlett Packard BASIC and BBC BASIC are examples of dialects that allow
structured programming to some extent. The multiplicity of different dialects of
BASIC leads to problems if a program is required to work on a wide range of
machines, i.e. if it is to be portable. If we require portability, then the program must
be written using only those features that are available in virtually all versions of
BASIC so that it can be easily adapted to work on any microcomputer. The programs
in this book are written, wherever possible, to satisfy this requirement.

1.3 NUMERICAL PROCESSES AND ERROR ANALYSIS

In general terms numerical analysis is the application of the fundamental arithmetic
operations to numerical data to provide numerical solutions to problems posed in
mathematical form. The microcomputer provides an excellent tool for carrying out
numerical work. Even those microcomputers with small memory can be used to
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solve a wide range of numerical problems since, as will be seen from later chapters
of this book, the majority of programs require only a small amount of memory.
However, although memory size may not be a problemin terms of program storage,
it does present problems in the way numerical data is stored, since this will often lead
to numerical errors.

Errors arise in computations performed on any computer because the finite
storage capacity will place a restriction on the storage space available for each
number. Numbers are automatically rounded to the number of significant places
specified for the particular machine. The type of errors which arise from this process
are known as rounding errors. For example the value given for 1/3 on many
microcomputers is .333333333, clearly this number has been rounded to nine
significant digits.

Although these rounding errors in themselves may seem insignificant, when
expressions which involve many calculations are performed using the standard
arithmetic operators with rounded numbers the errors will tend to accumulate.

As an example of how errors are magnified, consider the problem of solving the
quadratic equation

ax’+bx+c =0 (1.3.1)
The solution of this equation is given by the well known formula

x = [-b £ N(b? - 4ac))/(2a) (132)
Consider the calculation of the root

x = [-b + V(- 4ac))/(2a) (13.3)

This formula may give inaccurate results when 4ac is small relative to b2 The
inaccuracy is caused by the cancellation of many significant digits due to the
subtraction of nearly equal values. To avoid this problem we can multiply the
numerator and denominator of (1.3.3) by b+ V(b2 4ac) to give

x = —2c¢/[b + N(b*— 4ac)] (1.3.4)

This equation has removed the cancellation errors introduced by the subtraction
of nearly equal quantities. Table 1.3.1 shows a comparison between the use of (1.3.3)
and (1.3.4) to determine one root of a quadratic equation.

Having established that small errors can lead to significantly greater errors
during calculations, we must now examine how computers store numbers and how
arithmetic operations may magnify errors.



