SAMUEL L. MARATECK

PASCAL

Samuel L. Marateck

Courant Institute of Mathematical Sciences,
New York University

John Wiley & Sons, Inc.

New York Chichester Brisbane Toronto Singapore

To my mother, Rita
and the loving memory of my father Harold Marateck

Cover photo by George Cserna.

“Solving a Problem”, problems 12, 18, 19 and project 5, from BASIC 3/E by Samuel Marateck
copyright © 1986 by Harcourt, Brace, Jovanovich Inc., reprinted by permission of the publisher.

Recognizing the importance of preserving what has been written, it is a policy of John Wiley & Sons,
Inc. to have books of enduring value published in the United States printed on acid-free paper, and
we exert our best efforts to that end.

Copyright © 1991, by John Wiley & Sons, Inc.
All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of

this work beyond that permitted by Sections

107 and 108 of the 1976 United States Copyright
Act without the permission of the copyright
owner is unlawful. Requests for permission

or further information should be addressed to
the Permissions Department, John Wiley & Sons.

Library of Congress Cataloging in Publication Data: Marateck, Samuel L.

Marateck, Samuel L.
Pascal / Samuel L. Marateck.
p. cm.
Includes bibliographical references.
ISBN 0-471-60546-8
1. Pascal (Computer program language) I. Title.
QA76.73.P2M335 1991
005.26'2—dc20 90-40175
CIP
Printed in the United States of America

10987654321

ASCII ASCII

Code Character Code Character
0 NULL 76 L
7 BELL 7 M
8 BACKSPACE 78 N
9 HORIZONTAL TAB 79 (0]
10 LINE FEED 80 P
11 VERTICAL TAB 81 Q
12 FORM FEED 82 R
13 CARRIAGE RETURN 83 S
32 SPACE 84 T
33 ! 85 U
34 20 86 A%
35 # 87 w
36] 88 X
37 % 89 Y
38 & 90 Z
39 4 91 [
40 (92 2"
41) 93 [
42 * 94 A
43 = 95 _
44 - , 96 .
45 - 97 a
46 . 98 b
47 - / 99 c
48 0 100 d
49 1 101 e
50 2 102 f
51 3 103 g
52 4 104 h
53 5 105 i
54 6 106 j
55 7 107 k
56 8 108 1
57 9 109 m
58 : 110 n
59 : 111 o
60 < 112 p
61 = 113 q
62 > 114 r
63 ? 116 s
64 @ 116 t
65 A 117 u
66 B 118 \%
67 (6 119 w
68 D 120 X
69 E 121 y
70 F 122 z
71 G 123 {
72 H 124 |
73 I 125 }
74 J 126 ~
75 K 127 DEL

The ASCII Table

EBCDIC EBCDIC
Ordinal Graphic Ordinal Graphic
Position or Control Position or Control
0 Null 151 p
5 Horizontal Tab 152 q
7 . Delete 153 r
1) Vertical Tab 161 Tilde
12 Form Feed 162 S
13 Carriage Return 163 t
37 Line Feed 164 u
39 Escape 165 v
47 Bell 166 w
64 Space 167 X
74 ¢ 168 y
TS . 169 z
76 < 192 {
7 (193 A
78 + 194 B
79 I 195 C
80 & 196 D
90 ! 197 E
91 $ 198 F
92 * 199 G
93 =5) 200 H
94 ; 201 I
95 - 208 }
96 — 209 J
97 / 210 K
106 | 211 L
107 , 212 M
108 % 213 N
109 _ 214 0
110 > 218 P
111 ? 216 Q
121 Grave accent 217 R
122 2 226 S
123 # 227 T
124 @ 228 U
125 ! 229 v
126 = 230 W
127 v 231 X
129 a 232 Y
130 b 233 Z
131 c 240~ 0
132 d 241° 1
133 =) 242 2
134 f 243 3
135 g 244 4
136 h 245 5
137 i 246 6
145 J 247 7
146 k 248 8
147 1 249 9
148 m 250
149 n 255 Eight ones
150 0

The BExtended Binary Coded Decimal Interchange Code (EBCDIC)

PREFACE

This book is an outgrowth of the notes I have used teaching an introduction to
computer science course using Pascal—i.e., CS I. It is written for students who
have no prior knowledge of computers or programming. The book comes in two
versions, this volume discusses Standard Pascal, and a companion volume
discusses Turbo Pascal.

The design of the book has special significance and deserves comment. The
right-hand pages contain programming material (programs, output, and ta-
bles) which most students will readily understand; this is described in detail in
“To The Reader.” The left-hand pages contain explanatory text. Because of the
length of the programs in the book, it has not always been possible to strictly
adhere to this design, therefore, occasionally a self-test question will appear on
a right-hand page. It has been my experience, with books on Fortran 77 and
Basic I wrote and designed the same way, that students who have used a
terminal without having previously gone to class and who have studied only the
right-hand pages have been able to write and successfully run programs at their
first session at the terminal. Of course, students should also read the text on the
left-hand pages, to understand all facets of the programming technique de-
scribed.

The easiest way for students to learn program design is to see as many
examples as possible. With this in mind, we start presenting examples of
programming design as early as Chapter 2. Moreover, as the text progresses, we
present different programming planning techniques ranging from top-down
design and stepwise refinement of pseudocode, to the bottom-up approach and
including the divide and conquer, exhaustive search, induction and solution by
analogy approaches. The tool box approach (in which general utility modules

Vi

PREFACE

are developed; see Chapter 9) is also used to write some of the longer programs.
For most of the longer programs, we use stepwise refinement not only of the
pseudocode, but of the programs themselves. We used this approach with two
things in mind: Just as it is easier to write a complicated program in stages, it
is also easier to understand one written this way. Also, representing already
written modules only by the procedure heading allowed us to fit most of the
longer programs on one page. Thus, the student not only sees a pragmatic
strategy for writing lengthy programs, but also has an easier time of assimilat-
ing the material. But isn't that one of the reasons for using procedures and
functions in the first place?

An approach unique to this text is the discussion of the input buffer to
explain the intricacies of input/output (see Chapter 4). This also allows us to
take the mystery out of the workings of the eof and eoln functions (see
Chapter 8). Another technique students find interesting is the reappearance of
a given topic throughout the course of the book. With each subsequent
appearance, a more sophisticated technique is used to write the program. One
such topic that appears as a leit motif throughout the book is the writing of a
calculator, starting in Chapter 7 with the appearance of a program that simply
evaluates a three-character expression, and ending in Chapter 18 with a
program that uses a tree to evaluate expressions that are fully parenthesized.

The programming part of the book starts in Chapter 2 with the introduction
of pseudocode. We used this as an opportunity to introduce some of Pascal
syntax so that the student early on becomes accustomed to where and why
semicolons and the BEGIN and END delimiters are used. This also allows us to
introduce procedures and top-down design at this early stage. It is an alterna-
tive approach to that of Richard Pattis in his book Karel the Robot.

Chapter 3 covers the basics of Pascal programming and applies the princi-
ples of the previous chapter to program design; Chapter 4 deals with input/
output and concludes with a discussion of /O using the buffer. Chapter 5 offers
a consistent treatment of FOR loops for all types of variables so that the
similarities in the different loops are revealed. We chose to discuss the FOR loop
before the WHILE because of the inherent pitfalls in the latter due to infinite
loops. Armed now with statements that allow us to write non-trivial programs,
in Chapter 6 we give a detailed view of procedures and the implementation of
top-down design. As we learn the different facets of the IF-THEN-ELSE and
boolean operators in Chapter 6, we develop a word processing program and use
stubs to design a program that converts strings of digits into integers.
Chapter 7 rounds off our study of loops with a study of the WHILE and
REPEAT-UNTIL loops. We use the bottom-up paradigm to design a two-dimen-
sional random walk program. The chapter concludes with text files, so that
from here on, we can write our data as files. Chapter 8, which describes
functions, finishes our study of subprograms and concludes with the design
and implementation of an elementary calculator. Chapter 9 formally introduces
the concept of data structures in discussing arrays. We use the tool box
approach here to design and implement a program that determines the fre-
quency of letters in a sentence. The next logical step after learning arrays is to
study an application of arrays—strings.

PREFACE Vi

Chapter 10 begins by presenting the standard equivalents of the Turbo
Pascal string functions and procedures and ends up by using them to design a
global search and replace program. Chapter 11 uses one of the unique facets of
Pascal—the user-defined type to write calendar programs and a program that
generates Roman numerals—and concludes with the writing of a problem we
first introduced in Chapter 2 and have intermittently discussed until now.
Chapter 12 plans and implements a table look-up program. Chapter 13, on
records, discusses many programs, one of which forms an index of words used
in a paragraph. In writing this program we see that the bubble sort is stable,
whereas the selection sort is not.

Chapter 14 reviews text files and covers binary files. It uses a binary file for
a program that simulates a card-playing program. Chapter 15 gives a thorough
introduction to recursion using a unique approach. Each time a subprogram is
recursively activated, a copy of the subprogram and the stack is shown. These
copies are connected so that you can trace the recursion. You will see the
advantage of using this technique when you read the chapter.

The material in Chapters 17 and 18 deals with dynamic pointers. These
chapters cover linked lists, stacks, trees, and queues as completely as they are
treated in the CS II course.

Itis a pleasure to thank Professor Max Goldstein for making available to me
all the equipment of the Courant Institute Academic Computer Facility and, as
always, to thank Professor Jacob T. Schwartz and Professor Goldstein for their
friendship and constant support. I offer my thanks to my friends and col-
leagues, Professor Marsha Berger and Dr. David McQueen, for useful discus-
sions, and a special thank you to Dr. Jeffery H. Gordon; to Professors Martin
Davis, Ralph Grishman, and Olaf Widlund, on whose watch as chairmen I
taught Pascal; to Professor Robert Dewar, for making available to me a copy of
his screen editor DVED; to Gary Rosenblum, for his help in printing the
manuscript in near camera-ready form in order to ease the reviewers’ task; and
to Lorenza Prignano, for taking notes on my original lectures.

Thanks go to my good friend Eugene Rodolphe for reviewing the original
draft of the manuscript. I am also indebted to the following professors for
reviewing either the Pascal or the Turbo Pascal manuscript: George Beekman
and John Bertani, Oregon State University; C. Mark Bilodeau, United States
Military Academy, West Point; Larry Crockett, Augsberg College; Amrik Dhillon,
Borland International; Henry Etlinger, Rochester Institute of Technology;
Charles E. Frank, Northern Kentucky University; Dale Grosvenor, lowa State
University; Taylor D. Hanna, Portland Area Community College; Herbert Koller,
San Francisco University; Rose M. Laird, Northern Virginia Community Col-
lege; Phyllis Lefton, Manhattanville College; Lewis Miller, Caniada College;
Benedict Pollina, University of Hartford; Catherine Riccardo, Iona College;
Robert G. Reynolds, Wayne State; Waldo Roth, Taylor University; Patricia Sterr,
Joliet Junior College; and Delaine Timney, University of South Carolina. I am
particularly indebted to Professors Bertani, Koller, Riccardo, and Sterr for
invaluable phone conversations.

Samuel L. Marateck

TO THE READER

This book has been written on the premise that it is at times easier to learn a
subject from pictorial representations supported by text than from text sup-
ported by pictorial representations. With this in mind, in Chapters 3—14 we
have used a double-page format for our presentation. On the left-hand page (we
call it the text page) appears the text, and on the right-hand page (we call it the
picture page) appears the pictorial representation, consisting mostly of pro-
grams and tables.

Each picture page was written to be as self-contained as possible, so that
readers (if they so desire) may read that page first and absorb the essence of the
contents of the entire double page before going on to read the text. The text page
consists of a very thorough discussion of the programming techniques pre-
sented on the picture page. It refers to parts of the programs and tables on the
picture page; when reference is made on the text page to a given line of print on
the picture page, that line—whenever it is feasible to do so—is reproduced in
the text to promote readability. Students with a previous background in
programming languages and others who understand the picture page com-
pletely may find that in some chapters they can skip the text (left-hand) pages
and concentrate on the picture pages.

The following techniques are used as aids in making the picture page
self-contained:

1. As many as possible of the ideas discussed in the text are illustrated in
the programs and tables. The captions beneath these encapsulate
much of what is said in the text.

X TO THE READER

Shaded words in the captions describe lines underlined in the figures.
To illustrate this, a version of Figure 3.7a is reproduced below.

Salary l: =11.4;
Salary 2: =20.2;
WriteIn (Salaryl, Salary2)

FIGURE 3.7a. Inthe program, the number 11.4 is assigned to the variable Salary 1l
and 20.2 fo Salary 2 in the assignment statement

The statements Salary 1: =11.4; and Salary 2: =20.2 are
shaded to show that they are described by the words shaded in the
caption. Thus they are both assignment statements.

To the right of most programs appears a table describing what effect
certain statements in the program have on the computer’s memory. For
instance, the following table describes the effect that Salaryl: = 11.4
has on the memory:

Description Salary 1
Salary l: =11.4; 11.4

We see from the table that this statement caused the value 11.4 to be associated

with Salary 1 in the computer’s memory. The line-by-line analysis afforded by
these tables should help the reader understand the program.

CONTENTS

1

GETTING ACQUAINTED WITH COMPUTERS / 1

1.1 General Remarks / 2

1.2 The Compilation and Execution of a Program / 3

1.3 The Computer—Mainframes and Microcomputers / 4
1.4 The Memory / 5

1.5 Input/Output Devices / 6

1.6 The Operating System / 8

1.7 Time-Sharing and Batch Mode / 8

.

PROGRAMMING PLANNING / 14

2.1 Solving a Problem / 12

2.2 Pseudocode / 14

2.3 Top-down design and Stepwise Refinement / 15
24 Comments / 18

2.5 Loops / 19

Xii

3

CONTENTS

AN INTRODUCTION TO PASCAL / 21

4

3.1 The Shortest Pascal Program / 22

3.2 The WRITE Statement / 24

3.3 The WRITELN Statement / 28

34 An Infroduction to Integer Values / 30

3.5 Using Variable Identifiers; The Assignment Statement / 32
3.6 An Infroduction to Real, Boolean, and Character Values / 40
3.7 Using Real Variable Identifiers / 42

3.8 Real Operators / 44

3.9 Integer Operators / 48

3.10 Mixed Mode / 52

3.11 The READLN Statement / 54

3.12 Correcting Syntax Errors / 56

3.13 The CONST Definition / 58

3.14 An Averaging Problem / 60

3.15 Separating the Digits of an Integer / 64

3.16 Reserved Words / 68

3.17 More on Real Values / 68

READING AND WRITING AND BUFFERING / 79

S

4.1 Formatting Integer Output / 80

4.2 Formatting Real Output / 82

4.3 Formatting String and Boolean Output / 86

4.4 Reading Numerical Values / 92

4.5 Reading Characters / 96

4.6 Reading Numerical and Character Values Together / 100
4.7 Buffered Input / 104

THE FOR-DO LOOP AND THE ORDINAL TYPES / 115

5.1 Infroduction to the FOR-DO LOOP / 116
52 Using Variable Limits for the Control Variable / 122
5.3 Using the Control Variable in the Loop / 124

CONTENTS Xl

5.4 Averaging Numbers / 128

55 Ordinal Types / 138

5.6 Using a Character Variable as the Control Variable / 144
5.7 Using the DOWNTO / 150

5.8 Buffered Input with the FOR-DO Loop / 152

5.9 Averaging Numbers Read as Character Type / 154

5.10 Nested Loops / 160

5.11 Debugging a Program / 164

5.12 The Other Standard Functions / 168

6

PROCEDURES AND TOP-DOWN DESIGN / 179

6.1 An Introduction to Procedures / 180

6.2 Global and Local Identifiers / 186

6.3 Value Parameters / 192

6.4 Variable Parameters / 206

6.5 Variable Parameters Versus Value Parameters / 210

6.6 Nesting Procedures and the Scope of Identifiers / 212

6.7 The READLN, READ, WRITELN, and WRITE Standard Procedures / 216
6.8 Why We Use Subprograms / 216

/

THE IF-THEN-ELSE AND CASE STATEMENTS; MORE ON PROGRAM DESIGN:
PROGRAMMING BY STAGES AND TOP-DOWN TESTING / 225

71 The IF-THEN Statement / 226

7.2 An Infroduction to Word Processing / 228

7.3 The IF-THEN-ELSE Statement / 236

74 Calculating the Average Word Length / 238

7.5 The Boolean Operators: AND, OR, and NOT / 244

7.6 Introduction to Some Set Operations / 252

7.7 Our Word Processor Revisited / 2564

7.8 Adding Two Numbers Containing A “$” and a Comma: Top-Down
Testing / 258

79 Nesting IF Statements / 266

7.10 The Multiple Alternative IF-THEN-ELSE / 268

7.11 The Case Statement / 272

7.12 Case Statements that Cover Ranges of Values / 274

7.13 An Elementary Calculator / 276

XiV CONTENTS

8

THE WHILE AND REPEAT LOOPS, BOTTOM-UP DESIGN, THE
EOLN AND EOF FUNCTIONS, AND TEXT FILES / 287

9

8.1 The WHILE Statement / 288

8.2 WHILE Loop Pitfalls / 294

8.3 Using Sentinels / 296

84 An Application of Top-Down Design / 296

85 The REPEAT Loop / 304

8.6 Bottom-Up Design / 312

8.7 The EOLN Function / 324

8.8 The EOF Function / 330

8.9 Reading a Paragraph / 332

8.10 Using a Counter to Terminate a WHILE LOOP: Off by One Errors / 334
8.11 Using the Default Files in the Standard Input/Output Subprograms / 336
8.12 Using Text Files: An Introduction to Data Files / 338

FUNCTIONS / 357

10

9.1 Subprogram Functions / 358

9.2 Avoiding Side EFfects When Using Functions / 364
9.3 A Character Function / 364

9.4 Boolean Functions / 366

9.5 Calculating Factorials / 368

9.6 Writing a MOD and a DIV Function / 374

9.7 Using a Function in an Expression / 376

9.8 Writing a Calculator / 378

ARRAYS; PROGRAMMING BY STAGES / 397

10.1 An Introduction to Arrays; Arrays Containing Integer Values / 398
10.2 Arrays Containing Character Values / 402

10.3 Subranges / 406

10.4 Calculating Standard Deviations / 408

10.5 Using Arrays to Count: Programming by Stages / 420

10.6 Sorting / 436

CONTENTS XV

11

STRING PROCEDURES AND FUNCTIONS / 449

11.1 An Introduction to String Procedures and Functions / 450
11.2 More String Procedures and Functions: Search and Replace / 456
11.3 Packed Arrays / 478

12

USER-ENUMERATED TYPES / 487

12.1 Enumerated Types / 488
122 Calendar-Related Programs / 494
12.3 Roman Numerals / 500
12.4 The Survey Problem Revisited / 506

13

MULTIDIMENSIONAL ARRAYS / 513

13.1 Two-Dimensional Arrays / 514

13.2 Writing a Table Look-Up Program: Programming by Stages / 520

13.3 Sorting Words / 536

13.4 Using Text Files: Sorting Words in a Paragraph / 544

13.5 Using One or Two Subscripts to Describe an Array / 552

13.6 Arrays that Have More than Two Subscripts / 554

13.7 Using Enumerated Types to Overcome the Limitations of Multiple-
Dimensioned Arrays / 556

14

RECORDS / 565

141 Records / 566

142 Using the WITH / 570

143 Passing Records to Subprograms / 572

144 Arrays of Records / 576

145 The Selection Sort (Program Design by Induction) / 582
14,6 Sorting Records / 590

XVi CONTENTS

147 Sorting Records on a Key / 594

14.8 Determining the Frequency of Letters in a Sentence / 598
149 Generating an Index; Stable Sorts / 606

14.10 Variant Records / 618

14.11 Records of Records; Data Abstraction / 624

14.12 Advanced Use of Records / 627

15

FILES AND SETS / 639

16.1 Text Files / 640

15.2 Binary Files (Structured Files) / 641

16.3 An Elementary Program Using Binary Files / 642

156.4 Generating Seven-Card Rummy Hands / 644

15.5 The Binary Search / 663

15,6 Sets and Set Operations (Union and Difference) / 668
15.7 Another Set Operation: The Intersection / 673

15.8 Other Set Operations / 674

16

RECURSION / 681

16.1 Recursive Procedures / 682

16.2 Recursive Functions / 690

16.3 The Fibonacci Sequence / 693
16.4 The Forward Declaration / 698

16.5 The Buckets and Well Problem / 701
16.6 An Application / 705

17

POINTERS AND DYNAMIC STORAGE / 715

17.1 An Infroduction to Dynamic Storage / 716

172 Determining the Number of Available Locations / 720
17.3 Assigning Pointers to Pointers / 720

174 Passing Parameters of the Pointer Type / 723

17.5 Introduction to Linked Lists / 727

17.6 Generating a Linked List in a Loop / 731

CONTENTS

17.7 Generating a Linked List Using Data Read from a File / 735
17.8 Solving a Problem / 742

17.9 The Problem Solved / 753

17.10 Stacks / 756

18

TREES AND QUEUES / 765

18.1 An Infroduction to Trees: Terminology / 766

18.2 Building a Tree / 768

18.3 Using a VAR Parameter to Change the Linkage / 776
18.4 Generating a Binary Search Tree / 778

18.5 Expression Trees / 781

18.6 Building an Expression Tree / 784

18.7 Evaluating an Expression Tree / 790

18.8 Determining the Height of a Tree / 794

18.9 Queues / 796

Appendix A
THE MEMORY COMPONENTS OF A MICROCOMPUTER / 811

Appendix B
THE RELATIVE EFFICIENCIES OF SORTING AND SEARCHING
ALGORITHMS / 813
rogaendix E
RE PASCAL STATEMENTS / 817

INDEX / 819

XVii

