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PREFACE

These are the proceedings of the colloguium on potential theory held in
Copenhagen, May 14th - 18th, 1979, on the occasion of the 500th anniver-
sary of the University of Copenhagen. The colloquium was sponsored by
the Danish-French Society for Scientific Research and Exchange, and took
place at the H. C. @rsted Institute. There were 71 participants from 18
countries. The scientific programme comprised 44 lectures and a "Table
ronde", where open problems were discussed (cf. the problem section at
the end of these proceedings) .

Potential theory has developed in several directions and has inter-
faces with a diversity of branches of pure and applied mathematics. Tt
has been the particular aim and hope of the organisers that this collo-
quium should contribute to maintaining and promoting contact and coope-
ration between potentialists working with different aspects of potenti-
al theory. We take the opportunity of thanking all the participants for
their presence and their scientific contribution to the Colloguium.

The organisers gratefully acknowledge financial support from
The French Ministery for Foreign Affairs
The Danish Ministery of Education
The Danish-French Society for Scientific Research and Exchange
The Danish Natural Science Research Council
Julius Skrikes Stiftelse
Tuborgfondet
The Danish Mathematical Society

C. Berg, G. Forst, B. Fuglede

Organisers and editors
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ADMISSIBLE SUPERHARMONIC FUNCTIONS

V. Anandam

I, Introduction

In the study of potential theory, two cones of functions (the class
of positive superharmonic functions and the class of positive potenti-
als) play an important r8le. But these two classes of functions are
not very significant when there does not exist any positive potential
in the whole space as in R2. Insteéd, in this case, we have two other
cones of functions which are quite interesting.

We place ourselves in the axiomatic case of M,Brelot without any po-
sitive' potential, The two cones of functions are the class of admissi-
ble superharmonic functions (that is, those superharmonic functions
which have harmonic minorants outside a compact set) and the class of
pseudo-potentials, A superharmonic function is admissible if and only
if it is the sum of a pseudo-potential and a harmonic function,

We give here some important properties of pseudo-potentials and cha-
racterise them by means of their balayage functions, Using these pro-
perties, a notion of capacity is defined, which appears as a slight
variant of the logarithmic capacity in the classical case, Some of
these results have appeared elsewhere in a scattered form (see (2] and

(31 ).

In the special case of Rz, an admissible superharmonic function is
simply a superharmonic function whose total associated measure in a
local Riesz representation is finite; and a superharmonic function u
is a pseudo-potential if and only if -u is a subharmonic function of
potential type as defined by Prof. M, Arsove (that is, the total asso-
ciated measure of -u is finite and the order of -u is 0), More details
in this direction, particularly in the context of integral representa-
tion of a class of superharmonic functions including the pseudo-poten-
tials by means of a generalised logarithmie kernel, will be given in
a paper written in collaboration with Prof. M, Brelot,

ITI. Admissible superharmonic functions in a B.S. space.

Let L) be a B.S, space; that is, a harmonic space satisfying the axi-
oms of M, Brelot, with constants harmonic and having no potential >0
in the whole space. Fix an ultrafilter e finer than the filter of sec-
tions of the set of relatively compact open sets w of QL , If ﬁ;‘



w
a° Also we

fix an outer regular compact set k and a non constant harmonic func-
tion H2 0 in ()- k tending to O on 2k,

stands for the upper Dirichlet solution, let D(u) = lém H

A superharmonic function u in L) is admissible if it has a harmonic
minorant outside a compact set., Thus u is admissible if and only if
its flux at infinity is finite (for the notion of flux, see h]).

l. Pseudo-potentials.

A superharmonic function u is a B.S. potential if for some B8, D(u=8H)
= 0O which implies that li’rcn_niznf u(x)=B8H(x) > =oc where @ stands for
the point at infinity and consequently u is an admissible superharmonic
function with flux at infinity B. We shall denote by L* the class of
admissible superharmonic functions which are B.S.potentials up to addi-
tive constants,

An admissible superharmonic function u with flux B is a pseudo-poten-
tial if h-B8H is bounded outside a compact set where h is the greatest
harmonic minorant of u outside a compact set,

Proposition 1: Any admissible superharmonic function u can be written
as the sum of a pseudo-potential and a harmonic function.

Proof: If h is the greatest harmonic minorant of u outside a compact
set, then h = BH + a harmonic function v in QQ + a bounded harmonic
function outside a compact, This remark is sufficient to prove the
proposition,

Recall that two admissible superharmonic functions are equivalent if
the difference between their greatest harmonic minorants outside a com-
pact set is bounded. We remark in passing that two equivalent functions
have the same flux; and two admissible superharmonic functions u and v
with the same flux are equivalent if u ¢ v,

Proposition 2: An admissible superharmonic function equivalent to a
pseudo-potential is a pseudo-potential,

Proof: This proposition follows from the fact that an admissible su-
perharmonic function is a pseudo-potential if and only if its greatest
harmonic minorant outside a compact set is of the form B8H + a bounded
harmonic function,

Corollary 1: If u and v are pseudo-potentials, then inf(u,v) also is
a pseudo-potential,

Proof: If flux u ¢ flux Vv, we obtain immediately that inf (u,v) is



equivalent to u and hence the result.

Corollary 2: An admissible superharmonic function u is a pseudo-po-
tential if and only if u is equivalent to a B.S. potential,

Proof: It is enough to remark that if B is the flux u at infinity,
8H extended by O on k is a B,S. potential and that a B.S. potential is
necessarily a pseudo-potential.

We recall that () is said to be of harmonic dimension 1 if every po-
sitive harmonic function outside a compact set is of the form BH + a
bounded function,

Theorem 3: In a B,S. space () the following are equivalent:,

1) Q) is of harmonic dimension 1.

i1) If s is a superharmonic function majorizing a pseudo-potential, then
s 1s a pseudo-potential.

1ii) If s is an admissible superharmonic function majorized by a pseudo-
potential, then s is a pseudo-potential.

iv) Any upper bounded admissible superharmonic function is a pseudo-
potential,

Proof: To prove this theorem, we use proposition 1 and the fact that
if Q) is of harmonic dimension > 1, then there exists a non constant
harmonic function h in {1l such that h ¢ H outside a compact set,

Corollary 1: In a B.S. harmonic space of dimension 1, a superharmonic
function u is a pseudo-potential if and only if u majorizes some v € L.

Corollary 2: In a B,S, harmonic space of dimension 1, a superharmonic
function u is a pseudo-potential if and only if inf(u,0) is a pseudo-
potential,

Proof: If u is a pseudo-potential, inf(u,0) is admissible and hence
a pseudo-potential by iv)., On the other hand, if inf(u,0) is a pseudo-
potential, then u is a pseudo-potential by 1i).

2, Balayage,

In lﬁ] a method was given to obtain the balayage of an admissible su-
perharmonic function on a nonpolar compact set, That is, if v is an
admissible superharmonic function and e is a nonpolar compact set in () ,
then one can define an admissible superharmonic function u with the pro-
perties: u &€ v in 0 , u = v in é, u is harmonic in ()- e and flux u
= flux v. It is clear that this method is meaningful only for the class

of admissible superharmonic functions,



Later Guillerme [6] generalised this method to consider balayage of
an admissible superharmonic function on any nonpolar set. One supposes
here that £l has a countable base.

Let u be an admissible superharmonic function and e be a set not lo-
cally polar. Let B(u,e) stand for the family of superharmonic functions
majorizing u on e and outside a compact set; and F(u,e) the family of
superharmonic functions which majorize u on e and are equivalent to u
at infinity. Then inf {v t v e B(u,e)} = inf {v T ve F(u,e)} and the
common value Bu is such that B <u in QO , BE = u on e, Bﬁ is harmonic
in 0 - & and ﬁ is superharmonic equivalent to u at infinity,

It is shown further that Bﬁ has many useful properties of réduite;
among them are:

i) if e is fine open, Bﬁ = sup { Bﬁ : k compact < e} ’

ii) if u is finite continuous, Bﬁ = inf {B:'; : wopen D e} ’
111) BCVD | BC"D < 8 +382,
u u
iv) if e = t}en where e, is an increasing sequence of nonpolar sets

and if u is finite then Bﬁ = lim Bin.

Further we remark that if q is a pseudo-potential, then ;!
*
do-potential; more over, if e is compact %: €L .

e
is a pseu-

q p
Theorem 4: Let v be an admissible superharmonic function in ) with

countable base, If v is a pseudo-potential then ﬁ{v 50 2 inf (v,0)

in Q) , The converse also is true if ) is of harmonic dimension 1.

Proof: Since two pseudo-potentials with the same flux at infinity are
equivalent, inf(v,0) is equivalent to v. Hence B{v < 0} ¢ £ inf(v,0).

On the other hand, if s is a superharmonic function majorizing v on
{v < O} and the complement of a compact set then s > O in v > 0} and
consequently s > inf(v,0) in ) . Hence BLV < 0} > inf(v,0).

To prove the second part, write v = p+h as the sum of a pseudo-poten-
tial and a harmonic function. Then the greatest harmonic minorant u of
Vv, and hence that of the equivalent function inf(v,0), outside a com-
pact set is of the form BH + h + a bounded harmonic function. Since u
is bounded above and () is of harmonic dimension 1, h should be a con~
stant. This completes the proof of the theorem.

Theorem 5: Any pseudo-potential u is the supremum of an increasing
sequence of finite continuous L —potentials with compact support.

Proof: Using balayage, with usual arguments, one shows that (corollary
5.6 [6] ) u = sup u where u, is an increasing sequence of finite conti-



nuous superharmonic functions with compact (harmonic) support and equi-
valent to u, Since u, is equivalent to the pseudo-potential u, u, is
a pseudo~potential; since it has compact support also, u, ¢ L.

3 Capacity,

In this paragraph also £, is assumed to have a countable base.

We introduce a set function c defined on the class of compact sets
contained in a fixed relatively compact domain X of O » Making use
of certain properties of admissible superharmonic functions, we show
that this set function is increasing and right-continuous; it is also
strongly subadditive in the sense that if e and €, are two compact
sets in X, c(elU e2)+c(e1ﬂ e2) & c(e1)+c(e2).

We define then, in the usual manner, the following two set functions
on the subsets of X:

c, (e) sup { c(k) : compact k c e} and

¢ (e) = inf {cl(w) : open «w D e},

It turns out that c¥* is a true capacity defined on all subsets of X.
This true capacity appears as a slight variant of the logarithmic capa-
city in the classical case.

To define c, let us take some outer regular compact set K such that
e ﬁ. Let g be the unique superharmonic function in O such that
g = 0 on K, harmonic in {) - K, tending to O on dK and g+H is bounded
outside a compact set.

Definition 6: The set function ¢ on the compact sets e of X are de-
fined as follows: if e is nonpolar c(e) = D(B§+H); and if e is locally
polar c(e) = - « ,

Remarks: 1) The value c(e) does not depend on the choice of X nor of K.

2) If the axiom D is satisfied locally in Q) ¢+ We can prove that if e
is a nonpolar compact set, then there exists a unique pseudo-potential
P with flux at infinity -1 such that P is harmonic outside e, p £ -c(e)
in QO ang p = -c(e) g.e, on e,

Theorem 7: The set function ¢ is increasing, right-continuous and
strongly subadditive on the class of all compact sets of X. The exten-
ded function c® is a true capacity defined on all subsets of X

Proof: The properties of c are the consequences of the corresponding
properties of balayage recalled in the previous paragraph, The only



point that needs a special consideration is to prove that c(e) is right-
continuous when e is locally polar,

In this case note that we can choose a pseudo-potential p with com-
pact support such that P = o¢ on e and D(p+H) = 0. Let be an open

set in X such that P >non «w , Then for any compact set e, such that
e c:e11: w » we have Bg‘ € p-n since 9 and p-n are equivalent at in-
finity and on €, Pn 20 = q, Consequently c(el) £ D(p+H-n) = -n,

To prove the second part, we use again the recalled properties of ba-
layage and show that for any open set wcCX, ¢, (w) = D(B2+H) and for
any arbitrary set e in X, c'(e) = D(B§+H).

The usual arguments then show that c* is a true capacity; the fact
that ¢" can take the value - « does not really pose great difficulties.
In fact, the only difficult condition to be verified is that if e is
the union of an increasing sequence of sets e, in X then ¢ (e)=1im J(en).

Now if each o is locally polar, then c*(e) = = = c“(en). We shall
suppose, therefore, that e, is not locally polar. Since B® = sup BSn
and Bg"are all harmonic in Q- i, if w is a domain containing ﬁ, E;-
-Bg" <€ on 9w if n is large. This implies that Be—Bg“ < © outside w
since B;-Be“ if bounded in“the neighbourhood of the point at infinity.
Consequently ¢ (e) = lim c (en).

III. Admissible superharmonic functions in RZ.

In this section we consider briefly some of the results relating to
pseudo-potentials in the context of classical development in Rz. More
details can be obtained in (4]

First we note that a superharmonic function u in R2 with associated
measure M is admissible if and only if IRl =./dV is finite,

To see this, we take an inversion with the origin as pole which trans-
forms u into u' and i into the measure y'associated with u'. If G(x,y)
is the Green function on some Bg, u' (x) has a harmonic minorant in
Bg - {0} if and only if u'(x) equals [G(x,y) dyf(y) in Bg - {0} up to
a harmonic function, or equivalently ﬁ(N), with Pko) = 0, is finite for
some neighbourhood N of O,

Let us consider now a generalised logarithmic kernel N(x,y) in R2 de-
fined as:
| log(1/ix-yl) 4if |y] € 1
N(x,y) =
log(1/|x=yl)-log(1/\y}) 4if [yl > 1.



As to the existence of the associated /\-potentials with respect to
arbitrary measures B2 0, we have the following result:

2
Theorem 8: Let > O be a Radon measure in R”., Then the following
are equivalent:

f/\(x,y) di(y) is defined everywhere and superharmonic in R2.
ii) fd\A(y)/\Y\ is finite for some R.

iii) /}l‘(B )/r dr is finite for some R.

Consequence: Any admissible superharmonic function u with associated
measure |t+> O has a unique representation u(x) = f/\(x,y) dft(y) + h(x)
as the sum of a A -potential and a harmonic function.

Recall that for an increasing positive function M(r), the order X\ of
M(r) is defined to be » = lim sup (log M(r)/log r) and when 0 < X < o@ ,

M(r) is said to be of convergence class if joc:\fl(r)/r'\Jrl dr is finite.
R

Let u be a superharmonic function with associated measure o Then,

i) the order of u = the order of B(r,-u) where B(r,-u) = max -u(x)
X =y J
ii) the genus of u is the smallest positive integer g for which

ﬁ*(Bg)/rg+2 dr is finite, and
1 ~
iii) the Nevanlinna function of u is N(r) = f‘l(Bz)/x dx,
1

Theorem 9: Let u be a superharmonic function in R2. Then u is a A -
potential up to a harmonic function, equivalently of genus O, if and
only if N(r) has order < 1 or of convergence class of order 1,

‘Proof: The condition on N(r) is the same as that _/ N(r)/r dr is
R
finite or equivalently that fp(B )/r dr is finite. The proof is
now completed using theorem 8.

Lemma 10: Let u be an admissible A -potential with associated measure
M. Then u(x) 2 - |[pl log(l+x1).

This is immediate if we note that A (x,y) 2 =log(l+x}) for all x
and y, For when x is fixed,
if fyl < 1, log(l/\x-y|) > =-log(ix{+1) and

if \yl > 1, log(iyl/x-yl) > =log(l+(ixli/\yl)) > =log(l+ixl ).

Theorem 11: Let u be an admissible superharmonic function in R2. Then
the following are equivalent:
i) u is a A -potential (that is a A-potential up to a constant).
ii) outside a disc, u majorizes a harmonic function of the form
B logix{ + a constant.

iii) lim inf (u(x)/logixit) is finite.
wl— =<



iv) order of u is O,

Proof: As a consequence of lemma 10, it is immediate that i) = 11)
and iv); ii) implies obviously iii) which in turn implies iv).

It remains to see that iv) = 1). Since u is admissible, u is the
sum of a A -potential v and a harmonic function h. Now again by lemma
10, the order of v is O; consequently, the order of h is O which shows
that h is a constant,

Remarks: 1) As a consequence of theorem 16 of M. Arsove (5] and the
above theorem we obtain immediately that a subharmonic function u is
of potential type if and only if -u is an admissible A -potential,

2) As a particular case of the axiomatic theory, let us say that an
admissible superharmonic function u in R2, with h as its greatest har-
monic minorant outside a disc, is a pseudo-potential if for some B,
h(x)~8 logixl is bounded outside a disc. As a consequence of the above
theorem, we see that u is a pseudo-potential if and only if u is an ad-
missible f(-potential (note that the property ii) implies that the
greatest harmonic minorant of an admissible /(-potential outside a
disc is of the form B log ixl + a bounded harmonic function). Further

in this case, a B.S. potential is the same as a logarithmic potential.
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PRINCIPE DE HARNACK A LA FRONTIERE ET PROBLEMES DE
FRONTIERE DE MARTIN

par Alano ANCONA

Au cours de l'exposé au colloque, on a illustré par divers
exemples une méthode conduisant i des estimations, au voisinage de
points frontiéres,pour le quotient de certaines fonctions harmoniques
Sur un domaine; ce type d'estimation permet d'obtenir des propriétés
géométriques de la compactification de Martin: citons d'abord 1'exten-
tion d'un théoréme de Hunt et Wheeden ([ 8],[9]) aux opérateurs unifor-
mément elliptiques 3 coefficients hSldériens; si L est un tel opéra-
teur, @ wun domaine lipschitzien borné et greenien pour L, le L-
compactifié de Martin de § est homéomorphe 3 , chaque point
P € 30 é&tant associé 3 une minimale unique Kp’ normalisée en un
point fixé 0, et Kp tend vers z&ro en tout point frontidre P' # P
de plus, on peut &tendre i ce cadre le théoréme de Fatou sur 1'exis -
tence de limites non-tangentielles de quotients de fonctions harmoni-
ques ([ 1]). Dans le cas du Laplacien, le principe de Harnack 3 1la
frontiére 4 été obtenu par J.M.Wu ([ 12]) par une méthode différente:
B.Dahlberg a également donué dans ce cas une version de ce principe,
mais la constante de son estimation dépend 3 priori du voisinage du
point frontiére considéré, et n'est pas uniforme par rapport i la

constante de Lipschitz de Q ([6]).

Une autre application de la méthode est la résolution du probléame
suivant de G.Choquet : soient £ un domaine de Green de R" » Z € 93Q,
u€R”, ufto et c={z € R ; <z=z, w> > alz-z I, lz-z I < p}
un tronc de cdne de révolution de sommet z, contenu dans £ ; on
peut se demander si toute suite de points sur 1'axe du cdne tendant
vers z = est cenvergeante dans le compactifié de Martin (ordinaire)
de § et dans ce cas si le point limite est minimal. La premiére
question admet en génBral une réponse négative: plus précisemment, si
on se donne un c8ne C de demi-angle au sommet strictement inférieur
a g » On peut trouver un domaine © , C et z € 39 mettant en
défaut la propriété précédente (pour un contre-exemple) voir [1] , et
la remarque 5 de [2]); lorsque a est négatif ou nul, la situation
est complétement différente et on peut &tablir par une variante de la

méthode 1'énoncé suivant : si £ contient une boule B(x,r) et si



