second ediTion

ENTARY
COMPUTER

N |
& i
R
"1
C
1
aen
|t
fi

B
i \uf
NI
ey
bty
R
b {
! :
i 18
jo 4
A |
g
4
i b
14] i
[' A

i

)
Jcmm?
4 it}
,: Al

~ boris w. boquslAvsky

S ST o e
#

EI.EM

elementary
computer programming

in fortran iv
=2nd edition

boris w. boguslavsky
louisiana state university

reston publishing company, inc.
a prentice-hall company

reston, virginia

elementary
computer programming

in fortran iv
2nd edition

preface

to the second edition

Computers have become an ineradicable part of our ttves, as if anyone needs
to be told. Witness the spate of computer jokes that have replaced the Polish
Jjokes since the election of Pope John Paul II. Some of them have even acquired
an ethnic tint in reverse. Sample: Why does it take five Americans to multiply
six by nine? One to punch the keys, and four to fix the equipment.

Ubiquitous as they are, computers seldom get good press. Just as rare
incidents of crime get instant play in the media while predominantly good and
uneventful behavior recetves scant attention, computer failures and computer
“mistakes” get the publicity while the enormous benefits that flow from the
use of the computers seem to be known only to their users.

Few people realize that computers do not make mistakes; mistakes are being
made by the people who use them. To paraphrase an old joke: Doctors bury
their mistakes; mistakes bury computers. Manufacturers of faulty computers go
bankrupt.

To any professional an ability to communicate with a computer has become,
aside from his field of competency, a skill next in importance to reading. Whether
his work has to do with men, maps, machines, or money, it requires him to
seck information, to provide information, to make calculations, to set up records.
All these tasks are simplified and speeded up by computers. Computers reach
him even at home, in the form of tape-recorded messages, bills, and junk mail.

Gibbon said, way back in 1776: “All that is human must retrograde if it
do not advance.” To stay abreast of the developments in today’s world, we
must gain familiarity with computers. Better yet, we must learn to use computers.
Fortunately, any one who can read can learn to program a computer, that is,
to make the computer answer questions. All that is needed is a textbook that
presents the art of writing instructions to the computer in short, easy-to-under-
stand steps. Of course, access to a computer will make the reader’s progress
more rapid and tangible.

To provide such a textbook, I have revised the first edition of my ELEMEN-
TARY COMPUTER PROGRAMMING IN FORTRAN IV to make the material

v

vi preface to the second edition

clearer, simpler and easier for a beginner to assimilate. At the same time I
have added material to make the book interesting to a programmer with some
experience. To keep the book from becoming too long and unwieldy, I have
deleted the chapters on graphics and magnetic tape and disc. The material on
graphics, in greatly expanded form, will be published in a separate book. To
make it easier for a student to check his or her progress, I have provided answers
to every odd question and problem in the textbook.

I close with words of appreciation to two members of the System Network
Computer Center at the Louisiana State University. They are Robert L. Jenkins,
manager of computer services, and Malcom D. McNaylor, manager of computer
systems. These two gentlemen are walking encyclopedias of computer science.
Time and again they pulled me out of the depths of my dilemmas, and they
did it with speed, courtesy, and, last but not least, with a clear explanation.
These two men are not only capable scientists: they are excellent teachers.

Boris W. Boguslavsky

contents

preface to the second edition

chapter 1

chapter 2

digital computers—FORTRAN

1-1.
1-2
1-3.
1-4.
1-5.

introduction, 1

digital and analog computers, 5
programming, 5

FORTRAN IV (Four) language; compiler, 6
IBM system/360, 8

questions, 8

numbers and specifications

2-1.
2-2.
2-3.

2-4.
2-5.

2-6.
2-7.
2-8.

punched card, 11
types of numbers, 12
integers; data fields; FORMAT,
the | specification, 13
real numbers; the F specification, 16
exponential real numbers;
the E specification, 18
printout, 22
the X specification, 25
mistakes in specifications, 28
questions and problems, 31

11

vii

viii contents

chapter 3

chapter 4

chapter 5

chapter 6

computer components—FORTRAN

statements

3-1. components of a computer, 33
3-2. FORTRAN statements, 36

3-3. input/output statements, 38
3-4. condensed specifications, 40
3-5. control cards, 41

3-6. batch processing, 43

questions and problems, 44

H (Hollerith), P, and G specifications—

carriage control

4-1.
4-2.
4-3.
4-4.
4-5.
4-6.

The H (Hollerith) specification, 47
carriage control characters, 54

a complete program, 56
debugging, 60

the P, or scale, specification, 61
the G specification, 63

questions and problems, 65

formats—T specification—

unformatted input/output

5-1.
5-2.
5-3.
5-4.

5-5.
5-6.

multiple-record formats, 67
limited and extended formats, 71
the T specification, 80
unformatted (format-free)
input/output, 82
list-directed input/output, 92
repeated characters, 93
questions and problems, 94

arithmetic operations, expressions,

and statements

6-1.
6-2.
6-3.
6-4.

6-5.
6-6.

6-7.
6-8.

constants and variables, 97

integers and real numbers, 99

arithmetic operators, 101

arithmetic expressions and
operations, 101

arithmetic statements, 106

rules for writing arithmetic
statements, 107

FLOAT and INT functions, 109

mathematical or library functions, 110

33

47

67

97

chapter 7

chapter 8

chapter 9

chapter 10

contents x

6-9. STOP and END statements, 111
questions and problems, 112

the GO TO statement—the DUMP 117

7-1. the UNCONDITIONAL GO TO statement, 117
7-2. initialization, 119
7-3. the flow chart, 120
7-4. the COMPUTED G TQ statement, 121
7-5. the DUMP, 124
questions and problems, 130

the IF statements—the A
specification 135

8-1. the arithmetic IF statement, 135
8-2. logical expressions, 141
8-3. the logical IF statement, 144
8-4. trailer card, 150
8-5. “END=L” transfer, 152
8-6. the A specification, 153
8-7. The DUMP of alphameric
and special values, 161
questions and problems, 162

the DO statement 169

9-1. the nature and operation of the DO
statement, 169
9-2. rules of the DO statement, 175
9-3. nested DQ’s, 181
9-4. rules of the nested DQ@’s, 184
9-5. simultaneous equations, 185
9-6. sorting, 196
questions and problems, 201

arrays—the DATA statement 207

10-1. one-dimensional arrays and
subscripted variables, 207

10-2. the DIMENSION statement, 209

10-3. allowable subscripts, 210

10-4. operations with one-dimensional
arrays, 211

10-5. two-dimensional arrays, 223

10-6. operations with two-dimensional
arrays, 226

10-7. the array DUMP, 234

X contents

chapter 11

chapter 12

appendix a

10-8. the DATA statement, 237
10-9. FORMAT as data, 242
questions and problems, 249

subprograms 263
11-1. the statement function, 263
11-2. rules of the statement function, 266
11-3. the function subprogram, 268
11-4, rules of the function subprogram, 271
11-5. the subroutine subprogram, 278
11-6. rules of the subroutine subprogram, 287
11-7. subroutines with arrays—

adjustable dimensions, 288
11-8. directed returns from a

subroutine, 292
11-9. transfer of the literal data

to a subroutine, 294
11-10. the COMMON statement, 295
11-11. rules of the COMMON statement, 298
11-12. labeled COMMON storage, 299
11-13. roots of a polynomial by

the Newton-Raphson method, 301
11-14. The EQUIVALENCE statement, 304

problems, 309

type statements 317
12-1. introduction, 317
12-2, type statements, 318

12-3. INTEGER type statement, 321
12-4, REAL type statement, 322
12-5. DOQUBLE PRECISION type statement, 323
12-6. COMPLEX type statement, 334
12-7. LOGICAL type statement, 350
12-8. EXTERNAL type statement, 355
12-9. IMPLICIT type statement, 358
12-10. size of a storage location, 359
12-11. packing and unpacking, 362
12-12. masking, 367

problems, 369

the ibm 29 card punch 377

A-1, introduction, 377
A-2. the card punch, 378

A-3.
A-4.
A-5.
A-6.
A-7.
A-8.

A-9.

A-10.

contents

the keyboard, 378

the switch panel, 380

the card processing mechanism, 380

duplication, 381

jammed cards, 382

punching cards without the automatic
card feed, 382

punching cards with the automatic
card feed, 384

duplication (with corrections), 385

appendix b significant figures

appendix ¢ number systems

C-1.
C-2.
C-3.
C-4.
C-5.

C-6.
C-7.

C-8.
C-9.
C-10.
C-11.

C-12.
C-13.

C-14.
C-15.
C-16.

C-17.
C-18.

introduction, 391
the decimal system, 392
the binary system, 394
binary arithmetic, 396
conversion between the decimal
and binary systems, 398
the hexadecimal system, 400
conversion between the decimal
and hexadecimal systems, 404
conversion between the binary
and hexadecimal systems, 407
tens and twos complement notation, 408
storage and processing of data, 412
representation of integer numbers
in the memory, 414
the subroutines DUMP and PDUMP, 415
representation of real numbers
in the memory, 419
interpretation of a dump of
real numbers, 420
recognizing numbers in hexadecimal
notation, 422
additional DUMP formats, 423
powers of 16, 424
double precision numbers, 425
questions and problems, 432

answers to the odd guestions and problems

index

387

391

435

475

chapter 1

digital computers-FORTRAN

1-1. introduction

A digital electronic computer is an automatic device that (1) accepts (a) data
and (b) instructions on how to manipulate these data, and stores both in its
magnetic memory in the form of digits; (2) performs step-by-step operations
on the data in accordance with the instructions; and (3) issues the results of
these operations. The data consist of the related items of information pertaining
to a field of activity or study, such as the payroll of an industrial plant, the
dimensions of a structure, or the grades received by students in an examination.
The sequence of instructions that guide the computer in the processing of the
data is called a program. A program is written by a person, called a programmer.
It is the purpose of this book to teach you to become a computer programmer.

A competent programmer can usually write a short program directly.
Longer or involved programs often require a carefully laid plan. A plan may
be in the form of either an algorithm* or a flow chart. An algorithm may be
defined as a finite sequence of unambiguous steps that lead to a desired result.
A flow chart is a graphical representation of the operations that bring forth a
result. An algorithm and a flow chart to find the sum of any two numbers,
and a program that parallels them may be written as follows:

* From the name of the Arab mathematician, al-Khwarizmi, 780-850 A.D.

2 digital computers—FORTRAN

Algorithm Flow Chart Program
1. Given any two numbers, Read values of]
record or store them un- Jand K on a READ J, K
der the names J and K data card

2. Add the numbers stored
at J and K, and store the

Find the sum

= N= K
sum under N N "]-j— K g+
3. Write the number stored Write the sunj WRITE N
at N N

If the numbers 7 and —2 accompany the program as the data, the machine
will take the path described in the algorithm, or the flow chart, or the program,
and will print the result, 5.

A program is prepared for every different problem that is submitted to
the computer for a solution. The computer is only a machine: presenting to
it, as the data, two numbers, such as 7 and —2 above, does not cause the computer
to calculate their sum, 5, unless it receives an appropriate instruction, such as
N = J + K. Conversely, the computer executes the instruction N = J + K only
if the values of J and K are defined, that is, if it receives the values of J and K.
Finally, the computer does not print the result unless it receives a command
to do so, such as WRITE N.

A program is usually written on a coding sheet, such as is shown in Fig.
1-1, employing the notation of numbers, letters of the alphabet, punctuation
marks, mathematical and other symbols, and blanks. The ten numerical digits
(0 to 9) and the 26 alphabetical characters are usually referred to as the alphameric
(or alphanumeric) characters; all the other marks and symbols are called special
characters, and most commonly include:

11]12]13]14)15

+ = * / =, . () "’ blank Al T+ 1B

The special character blank is simply a blank space on the coding sheet;
in the illustration shown above, right,blanks occupy spaces 12 and 14; a blank
is a character, as much as A, +, and B. If the information containing blanks is
printed on plain paper, as will happen in many places in this textbook, the
blanks may be indicated by the symbol .; thus the illustration above may be
printed A.+.B.

Three additional special characters, $ (dollar), # (pound), and @ (at),
are also known as national characters.

For their interpretation by the computer, the alphameric and special charac-
ters are transformed into magnetic spots on tape or disks coated with iron
oxide or into holes punched on paper tape or cards. Figure 1-2 shows a typical
card punched with holes that are coded to represent X = 2.4.

The punched card is the most commonly used medium for recording in-

L-1 anbi4

}hﬁhk#ﬂ.!nhu _:z.mhﬂhﬁﬁhlwuﬂr,]ﬁm_mhm_mmln]nphﬁkh.pc8 02 61 81 21 O 5 vl el 2 101 6 8 & 9 6 b ¢ & 1
4
/
/
y
#
/
QIN|3
[d|@L|S
(1 1sl4] XD D L vNNg 4 c

HASHEINE NS

\A. A+ X[=|Z

/ Sl bI=|A

\ Pl [2]=|X
/1 | | Wnjs] | T [AMsiAv[Asinlolele] | [1] IvHoepid] | |2
56 .61 0L L1 9L L 9L £1 71 11 01698915 9959 v8§ JSvZv b OF 6 9E LEIL SEVE EL 28 6086282 [200 02 PEEC e 1202 61 81 L1 9 I i g 21 1101 6 8 L[8|S b & 21
R | / /ivawaruis wesssos A

/] L

‘ON ON12373 Quv2 /[swouonuism 3uva] HIWWYHO0Hd
40 39vd \ SNIHINAA Wv8908d

_.EB Buipo) NVH1¥03 W8I

4 digital computers—FORTRAN

X=24
1
OUOUOUIEUDDll!]ﬂOI][NI!DllﬂDDOGUGDGUGDUGDUDDHDUVICUDDDUUODGHOHDUDIIUIIUIIGDODOODOMUIHIDBD
R TR 1997506 7282030 312 33 343516 17 528 4T o 47 4T M A5 45 47 8 ARH0 5 5D 50 8 L5 06 50 9EI b L 4 R R TR
HIHIHIIII\IIIH‘HI\IH‘IIHHI1lllilHlHlllI|l|HIlll]II‘IIIIHIIII]IIII‘H

222222222202272272222222222222221222
333333333338333333333334333333333333333333333333233333333333333333333333313333333
4080084024404 030484380434 244444444444844044444438844404444044048444444844444844
555555555555595565555555555555555559555555556855555555558555558555555555555568555555
66666666MEE66666666665566666666666666666566666666666666666666666666666666E6666666
1ETIITRIIITIININIIINNINNNNIININNNTIINIINENINIIIINNNINITANINIININIINLITINIANITINTINENNNY
83888388 NasMs88368886888688888888088863688386088488528888888888888083668688B88888883
9999939999 953!593999599599959‘393955595999999995995959955“59&99993955"99959 5959
T3 ABE 180NN SIE1 BN 22D X 5 SRR

Y0 30 37 23 34 35 96 17 36 43 40 4147 4594 43 66 43 €E 45 50 51 17 5334 553 36 51 55 3150 6162 6 6155 666+ 6a 6479 N 1273 % 1<

Figure 1-2

formation for a computer because, when additions or corrections have to be
made, individual cards can be easily inserted into or removed from a deck of
cards. For instructing beginners in the science of computer programming, exclu-
sive reliance is made on punched cards, because mistakes abound in the begin-
ners’ work.

A simplified example of a program and the accompanying data are shown
on four lines of a coding form in Fig. 1-3.

For submission to the computer, these four lines will be punched on four
cards, one line per card (a card may contain only one line of information).
The program shown will be encoded on the first three cards, and the data on
the fourth.*

When the cards are presented to the computer, the machine will read
the program on the first three cards, will scan the data card and interpret 6.0
as P, 4.4 as Q, and 4.0 as R, will add P and Q (6.0 + 4.4 = 10.4), will subtract
R from P (6.0 — 4.0 = 2.0), will divide the sum by the difference (10.4/2.0 =
5.2), and will print the result (5.2) on a sheet of paper.

% P '§ FORTRAN STATEMENT
1]2[3[4(516[7]8|9]10[11[12]13]14]15[16]17|18|I9[20|21|22[23|24]25|26|27 |2B[29]30[31 |32]33
R|E|AID] |P|,|Q|,|R
Y|=|(|P|+Q) |/{(|P|=|R] L [P|R|O|G|R|A|M
WIRII|TIE| |Y
6|.10 4|.|a 4|.|0|} |D|A|TIA

Figure 1-3

* Additional cards required to establish unfailing communication with the computer will
be described later in the book.

1-3. programming 5

More complex problems are handled by the computer in a similar fashion;
the only difference is that there are more cards, both for the data and for the
instructions that guide the computer in processing the data.

1-2. digital and analog computers

Article 1-1 began with a definition of a digital electronic computer. Modern
electronic computers are divided into two basic types: digital computers and
analog computers.

A digital computer is a device that receives information in the form of
discrete electrical pulses transmitted in coded combinations, stores these pulses
in its magnetic memory as strings of only two digits, 0 and 1, and, when these
strings represent numbers, operates on them; because the computer preserves
the effects of all the pulses, the values stored in the computer and the results
obtained by it are exact (within the range of the machine).

An analog computer operates on numbers that are represented in a continu-
ous form by measurable amounts of current or voltage: the larger the current
or voltage, the larger the number. Since measurements of the currents or volt-
ages, and therefore of the numbers, are made by ammeters or voltmeters, which
can be read only approximately, the results supplied by an analog computer
are never precise; however, their accuracy is generally sufficient for most pur-
poses.

The difference between a digital computer and an analog computer is
comparable to the difference between a beam balance with pans and a spring
balance. In the beam balance the weight of an object placed on one pan is
found by adding together the discrete known weights placed on the other pan;
in the spring balance, such as a bathroom scale, the weight is found by reading
a number corresponding to a measured deformation of the spring.

This text will be devoted exclusively to digital computers.

1-3. programming

Although the program and the associated data are always submitted to the com-
puter together, they seldom have the same origin, and their respective develop-
ments may be widely separated in time and place. A problem and its data may
originate with a scientist, a businessman, or even a schoolboy who has learned
the ages of his classmates and wants to determine the average age of the class.
The program, on the other hand, which will guide the computer through the
solution of the problem, is usually prepared by a programmer, the person who
can devise the requisite algorithm or flow chart and who knows the details of
communication with the computer in a language that it accepts. For instance,

6 digital computers—FORTRAN

a competent programmer will not permit the second statement of the program
shown in Fig. 1-3 to be written

_P+tQ
Y—P_Q

that s, in two lines and without parentheses: such a statement cannot be punched
in a single line on a card. Again, the programmer will not allow symbols such
as A or 7 to appear in a program, because these symbols are not to be found
among the alphameric and special characters that can be punched on a card;
he would replace A by DELTA and 7 by PI (or PIE).

The computer—strictly speaking, the computing system—is designed to
accept a fixed number of symbols and of combinations of these symbols; there-
fore, it can function only when only these symbols and these combinations
are presented to it. The programmer is the person who can digest the problem
presented to him by a scientist or a schoolboy and write logical instructions
to the computer, using the symbols or combinations of symbols and procedures
that are acceptable to the computer.

1-4. FORTRAN IV (four) language; compiler

Although the program of Fig. 1-3 appears to be written in the ordinary English
language in combination with a mathematical expression, actually it is written
in a specialized and rigidly formulated language—a programming language—called
FORTRAN IV (there were earlier versions of FORTRAN). This language was
invented to simplify writing computer programs.

There are two languages involved in the solution of a problem by a com-
puter: (1) the language of the programmer, a human being, who prepares the
program, that is, the sequence of instructions that guide the computer; and
(2) the language of the computer, a machine, which must interpret and execute
the instructions of the program.

The language of a computer is called a machine language. A machine language
consists of a limited number of one-step instructions that a computer is designed
to interpret and execute. Generally a machine-language instruction consists of
two parts: (1) an order to perform an operation and (2) the location of the
item of information that is to be operated on; both the operation and the location
are identified in a numerical code. A programming-language instruction, such
as X = A + B, is broken down, in the machine language, into a sequence of
three steps, GET A, ADD B, STORE AT X, all expressed as two-part numbers.

These numbers enter the computer expressed in terms of only two digits,
0 and 1. These two digits can be represented in a machine by the electromagnetic
effects of an electric current flowing in the one or opposite directions along a
wire. Since only two directions are possible, only 0 and 1 can be represented

1-4. FORTRAN IV (four) language; compiler 7

by their effects. Therefore the computer can read instructions and operate on
data only if they are presented to it in the form of numbers such as 0101 or
1000101. (Numbers expressed in terms of 0 and 1 are called binary numbers;
a description of the binary system of numbers is given in Appendix C.)

The programmer, being only human, cannot write a program using only
0’s and 1’s without making mistakes or, worse, losing his mind. Therefore he
uses a programming language, such as FORTRAN. FORTRAN is a problem-
oriented programming language, that is, a language that, instead of reflecting
the machine-language idiosyncrasies of a particular computer, enables the pro-
grammer to write the solution of a problem utilizing familiar English words
and mathematical expressions. FORTRAN is a most widely used problem-ori-
ented programming language.* FORTRAN is a coined word, formed by joining
the first syllables of FORmula TRAN slation.

The program written by the programmer in a programming language is
called the source program, and the language itself (FORTRAN) is called the source
language; the program written in the machine language is called the object program
and the machine language is called the object language.

A source program written in a programming language, such as FORTRAN,
must be translatable into the machine language. This must be so, because a
gap exists between the source program that the programmer writes and the
object program that the computer reads and executes, just as a gap exists between
programs written in English and French. The gap in the latter case is filled by
a translator or a dictionary; the gap between the source program and the object
program is filled by a compiler.

A compiler is a special program, written in the machine language, which
is loaded into the computer ahead of the source program, written in FORTRAN
(or any other programming language). Under instructions from the compiler,
the computer reads the source program and translates it into the machine lan-
guage. The compiler does not just convert one source program statement into
one machine-language statement: several minutely detailed machine-language
statements are generally generated to create the effect of a single source state-
ment, and the compiler is capable of producing this one-to-many correspondence
between the source and the machine languages. In fact, if an elaborately designed
compiler is stored in a computer, the source program can be made to look
almost like the actual mathematical expressions in the original problem.

A computer may have a library of several different compilers varying in
their complexity and efficiency. There are four compilers generally associated
with FORTRAN: the E compiler, the G compiler, the H compiler, and the
WATFIV compiler. The WATFIV compiler, developed at the University of
Waterloo (Ontario), is a truncated compiler, that is, it covers only the elementary

* More than 100 programming languages have been developed for communication with
computers. Many of these are completely dead; many others have only special applications.
FORTRAN’s nearest competitors are ALGOL, COBOL, and PL/1 languages. FORTRAN
was the first programming language to be standardized through the U.S.A. Standards
Institute procedures.

