aspects of
computationon
asynchronous
jarallel processors

edited by
m.wright

north-hofland

ASPECTS OF COMPUTATION
ON ASYNCHRONOUS
PARALLEL PROCESSORS

Proceedings of the IFIP WG 2.5Working Conference on
Aspects of Computation on Asynchronous Parallel Processors
Stanford, CA, USA, 22—26 August, 1988

edited by

Margaret WRIGHT
AT & T Bell Laboratories
Murray Hill

New Jersey, U.S.A.

NORTH-HOLLAND
AMSTERDAM - NEW YORK - OXFORD - TOKYO

“IFIP, 1989

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photo-
copying, recording or otherwise, without the prior written permission of the publisher,
Elsevier Science Publishers B.V. (Physical Sciences and Engineering Division), P.O. Box
103, 1000 AC Amsterdam, The Netherlands.

Special regulations for readers in the U.S.A. — This publication has been registered with
the Copyright Clearance Center Inc. (CCC), Salem, Massachusetts. Information can be
obtained from the CCC about conditions under which photocopies of parts of this publica-
tion may be made in the U.S.A. All other copyright questions, including photocopying
outside of the U.S.A., should be referred to the publisher, Elsevier Science Publishers B.V.,
unless otherwise specified.

No responsibility is assumed by the publisher or by IFIP for any injury and/or damage to
persons or property as a matter of products liability, negligence or otherwise, or from any
use or operation of any methods, products instructions or ideas contained in the material
herein.

pp. 55-68, 223-22.3, 235-236, 255-260: copyright not transferred.
ISBN: 0 444 87310 4

Published by:

ELSEVIER SCIENCE PUBLISHERS B.V.
P.O. Box 103

1000 AC Amsterdam

The Netherlands

Sole distributors for the U.S.A. and Canada:

ELSEVIER SCIENCE PUBLISHING COMPANY, INC.
655 Avenue of the Americas

New York, N.Y. 10010

US.A.

Library of Congress Cataloging-in-Publication Data

IFIP WG 2.5 Working Conference on Aspects of Computation on
Asynchronous Parallel Processors (1988 Stanford, Calif.)

Aspects of computation on asynchronous parallel processors
proceedings of the IFIP WG 2.5 Working Conference on Aspects of
Computation on Asynchronous Parailel Processors, Stanford, CA, USA,
22-26 August, 1988 ’ edited by Margaret Wraight.

b. cm.

Includes 1ndex.

ISBN (0-444-87310-4 (U.S.»

1. Parallel processing (Electronic computers)--Congresses.

1. Wright, Margaret H. II. Title.

QA76.5.12775 1988

004 .35--dc 19 88-37537
cIpP

PRINTED IN THE NETHERLANDS

PREFACE

This book includes the papers presented at Working Conference 5, “Aspects of computation
on asynchronous parallel processors”, organized by Working Group 2.5 (Numerical Software) on
behalf of Technical Committee 2 of the International Federation for Information Processing. The
conference was held at Stanford University, Stanford, California, from August 22-26, 1988, with 75
invited participants from 14 countries.

Planning for the conference began in the summer of 1984, when it appeared that increasing
availability of asynchronous parallel processors was beginning to provide major opportunities for
original and useful work in scientific computing. In the intervening four years, both interest and
activity in parallel computation have grown to a dramatic extent, and many other conferences have
been devoted to parallel computing. Nonetheless, our conference had a distinctive character because
of its deliberately limited size and informal atmosphere.

The fizld of parallel computing is still in a highly volatile state, and researchers display a wide
range of opinion about many fundamental questions such as models of parallelism, approaches for
detecting and analyzing parallelism of algorithms, and tools that allow software developers and users
to make effective use of diverse forms of complex hardware. Accordingly, the conference was intended
to be neither a state-of-the-art survey nor a general review of the field. Rather, the hope was that
the conference would provide an opportunity for productive exchanges of ideas among researchers
who specialize in different aspects of parallel computing, and for the emergence of tentative overall
themes. This hope was amply fulfilled.

It is traditional at these working conferences to build substantial time for discussion into the
schedule, and to include the transcribed discussion in the conference proceedings; readers of this
volume are thus able to recapture some of the lively flavor of the conference. To encourage the
sharing of new ideas, an “open session” is always scheduled for short presentations. This volume
differs from previous conference proceedings in that extended abstracts or short versions of papers
from the open session are included, along with the ensuing discussion.

The conference co-chairmen were Richard J. Hanson and Brian T. Smith, and Margaret H.
Wright was the local arrangements chairman. In addition, the program committee included Thomas
J. Aird, Frangoise Chatelin, L. Dekker, L. M. Delves, Bo Einarsson, Brian Ford, Morven Gentleman,
Robert Huddleston, James R. McGraw, George Paul, Jr., John K. Reid and John R. Rice.

The meeting received generous support from several co-sponsors: the Computation Department,
Lawrence Livermore National Laboratory, Livermore, California; Applied Dynamics International,
Ann Arbor, Michigan; and the Algorithms Group, Systems Optimization Laboratory, Department of
Operations Research, Stanford University. Special thanks are due to Robert Huddleston of Lawrence
Livermore National Laboratory for his support and encouragement of the conference.

The meeting was officially hosted by the Department of Operations Research, Stanford Univer-
sity, and we accordingly thank its chairman, Donald L. Iglehart, and the Algorithms Group of the
Systems Optimization Laboratory (Philip E. Gill, Walter Murray and Michael A. Saunders).

Equipment that formed an essential part of two presentations was generously provided by Bonnie
Toy on behalf of Sun Microsystems, Inc., Mountain View, California.

The session chairmen and discussants served a crucial role in the success of the conference. The
session chairmen were W. J. Cody, Jr., Theodorus J. Dekker, Bo Einarsson, Brian Ford, Lloyd D.
Fosdick, George Paul, Jr., John K. Reid and Mladen A. Vouk. The discussion in this volume was

vi Preface

recorded through the diligent work of the discussants: Thomas J. Aird, Maurice Clint, Stuart Feld-
man, Lloyd D. Fosdick, W. Morven Gentleman, Fred G. Gustavson, Sven J. Hammarling, Richard
J. Hanson, Elias Houstis, Olin G. Johnson, Charles L. Lawson, Paul C. Messina, Theodore Pap-
atheodorou, John R. Rice, Frederic N. Ris, Brian T. Smith and Danny C. Sorensen. The discussants
were impeccably organized by Thomas J. Aird, who deserves particular mention for his efforts.

Arrangements before and during the conference itself were coordinated by Gail L. Stein and by
Patricia A. Schermerhorn of the Department of Operations Research, Stanford University. Their
organizaiion, dedication, helpfulness and calm contributed immeasurably to the smooth running of
the conference. SLW Associates—in particular, Margaret London and Susan Sweeney—provided
expertise that made even the most complex details of conference organization seem effortless for the
participants.

As editor of these proceedings, I thank Jerri Rudnick for her help in preparing the TEX versions
of the papers that appeared in the conference booklet, and Carol Galgano for her skillful assistance
with the final copy.

Margaret H. Wright
Murray Hill, New Jersey
November 2, 1988

vii

CONFERENCE WELCOME

On behalf of Working Group 2.5 of the International Federation of Information Processing
Societies, I welcome you to this working conference, our fifth conference on aspects of numerical
computation. Our working group interprets this subject, numerical computation, broadly. We
are interested in more than algorithms for solving numerical problems; we are interested in the
whole framework and the mechanics of numerical computation. Thus, in addition to algorithms,
our working conferences have been concerned with software tools and libraries, with programming
languages, with arithmetic, and with the portability and reliability of programs—all in the context
of numerical computation.

As with all conferences, the principal objective of this conference is the direct exchange of ideas,
and of research results. To promote this and to ensure good coverage our working conferences are
one week long. Attendance is limited in order to help ensure that all participants have a good
opportunity to ask questions and discuss their ideas. Publication of the conference proceedings
provides a record of th- «.lks and a summary of the discussions.

Ours is an international organization and so we have another objective, indeed an important
obligation. That is to bring together scientists from all over the world, and to assure a world-
community representation among speakers and attendees. This is not easy to do. Costs of travel are
prohibitive for many. Large-scale computation requires expensive facilities, thus restricting research
opportunities for some of us. Nevertleless, in organizing these conferences we seek participants from
all parts of the world and we do our best to assure fair and balanced representation.

The subject of this working conference is computation on asynchronous parallel processors.
The formal presentations have been grouped into general areas as follows: scientific applications;
languages; and libraries, environments and tools. Each morning or afternoon session is devoted to
one of these areas. On Thursday afternoon we have allocated time for an “open session” where short,
unscheduled presentations can be made. We have allocated time for discussion after each paper and
a longer time for general discussion at the end of each morning and afternoon session.

A tradition we follow is to have an afternoon excursion midway through the conference followed
by a dinner and, on another evening, a banquet. Qur excursion will be Wednesday afternoon, and
the banquet will be Thursday evening. We hope that you will come to these events and enjoy further
discussions in a relaxed atmosphere and have fun.

Brian Smith, Richard Hanson and Margaret Wright were the principals in putting this con-
ference together. They deserve thanks from all of us. Brian and Richard co-chaired the program
committee, and Margaret took care of the local arrangements.

We want all of you to take this opportunity to learn and discuss ideas in parallel computation,
to share your research ideas, to make new research contacts, and thus to help make this meeting a
success for all of us.

Lloyd D. Fosdick
Chairman, Working Group 2.5

CONTENTS

EFFECTIVE SCIENTIFIC APPLICATIONS, Session 1
Chair: Lloyd D. Fosdick
Discussants: Charles L. Lawson, John R. Rice

Solving Elliptic Equations on the Cedar Multiprocessor .
E. Gallapoulos and A. Sameh

Parallel Eigenvalue and Singular Value Algorithms for Signal Processing
K. V. Fernando and S. J. Hammarling

EFFECTIVE SCIENTIFIC APPLICATIONS, Session 2

Chair: John K. Reid
Discussants: Thomas J. Aird and Richard J. Hanson

Analysis of a Two-Level Asynchronous Algorithm for PDES
John R. Rice and Dan C. Marinescu

Parallelization on an MIMD Computer with Real-Time Scheduler,
Gauss-Jordan Example .
Serge G. Petiton

A Vector and Parallel Implementation of the FFT Algorithm on the IBM 3090 .

Ramesh C. Agarwal

A Language Comparison for Scientific Computing on MIMD Architectures .
Mark T. Jones, Merrell L. Patrick and Robert G. Voigt

EFFECTIVE SCIENTIFIC APPLICATIONS, Session 3

Chair: T. J. Dekker
Discussants: Sven J. Hammarling and Maurice Clint

Multilevel Parallel Solver for Banded Linear Systems .
Ibrahim N. Hajj and Stig Skelboe

Asynchronous Parallel Iterative Methods .

Avi Lin

A Project for Developing a Linear Algebra Library
for High-Performance Computers

J. Demmel, J. J. Dongarra, J. DuCroz, A. Greenbaum
S. J. Ha.mmarlmg and D. C. Sorensen

Monte Carlo Simulations of Lattice Gauge Theories
Philippe de Forcrand

.23

. 35

. 45

. 55

. 69

79

. 87

. 93

X Contents

LANGUAGES AND PROGRAMMING ISSUES
Chair: Mladen A. Vouk
Discussants: Morven Gentleman and Fred Gustavson

Asynchronous Parallel Execution of a Multiply Nested For Loop
by Vector Indirect Addressing
Takao Tsuda

Ultra-High Performance Multiprocessor Supersystems
with Programmable Architecture .
A. V. Kalyaev

LIBRARIES, ENVIRONMENTS AND TOOLS
Chair: W. J. Cody, Jr.
Discussants: Paul C. Messina, Olin G. Johnson

Tools and Methodology for Programming Parallel Processors . .
Jack J. Dongarra, Danny C. Sorensen and Orlie Brewer

Monitoring Parallel Programs on Message-Passing Multiprocessors .

A. P. W. Bohm, J. R. Gurd and M. C. Kallstrom

Numerical Library Facilities for Transputer Arrays .
L. M. Delves and N. G. Brown

Aspects of the Design of Portable and Efficient Basic Linear Algebra in Ada
M. J. Erl, G. S. Hodgson and L. Steenman-Clark

LANGUAGE DESIGN ISSUES
Chair: Bo Einarsson
Discussants: Stuart Feldman and Danny C. Sorensen

Automatic MIMD Parallelization .
Hans P. Zima

Parallel Programming Experiments with Linda .

Nicholas Carriero, David Gelernter, Susanne Hupfer, James Narem and Raman Sundaresh

Parallel Processing based on Active-Data for Asynchronous Systems
Chris Jesshope

SISAL Implementation and Performance
Stephen Skedzielewski

OPEN SESSION

Chair: John K. Reid
Discussants: Thomas J. Aird, Elias Houstis, Theodore Papatheodorou

A Parallel Implementation of Matrix Multiplication and
LU Factorization on the IBM 3090
Ramesh C. Agarwal and Fred G. Gustavson

A Parallel QR Decomposition Algorithm
Lars Eldén

Optimizing a Reconfigurable Transputer Array for
Line-of-Sight Communications A
J. S. Ward, J. B. G. Roberts and P. Simpson

101

111

125

139

159

171

181

193

201

211

217

222

223

Contents X1

Solution of Ordinary Differential Equations by
Waveform Relaxation Methods 22
Stig Skelboe

Recursive Task Generation 22
Geoffrey Hunter and Tyler A. Ivanco

DINO-A New Language for Numerical Computation
on Distributed Memory Multiprocessors 232
Matthew Rosing and Robert B. Schnabel

Mapping SISAL Programs for Efficient Execution
on the Connection Machine 234
Jack B. Dennis

Parallel Computing Forum (PCF) Fortran 23
Brian T. Smith
A Model of Fault-Tolerant Dataflow Computers 236

Milan Ojstersek and Viljem Zumer

SYSTEM DESIGN ISSUES

Chair: Brian Ford
Discussants: Thomas J. Aird and Brian T. Smith

Synchronous versus Asynchronous Communication
in High Performance Multicomputer Systems 239
P. M. Behr, W. K. Giloi and W. Schréder

EFFECTIVE SCIENTIFIC APPLICATIONS, Session 4

Chair: George Paul, Jr.
Discussants: Lloyd D. Fosdick and Frederic N. Ris

Distributable Algorithms for the Symmetric Eigenproblem 249
M. Clint, D. Roantree and A. Stewart

Coarse Grid Acceleration of Some Domain Decomposition Methods
on Multiprocessors 25
Garry Rodrigue and Ted Ferretta

Future Scientific Programming 261
Arvind
PARTICIPANTS o o i v i v i i s .25

AUTHOR INDEX o o021

Aspects of Computation on

Asynchronous Parallel Processors

M. H. Wright (Editor)

Elsevier Science Publishers B.V. (North-Holland)

(© IFIP, 1989 1

SOLVING ELLIPTIC EQUATIONS
ON THE CEDAR MULTIPROCESSOR

E. GALLAPOULOS and A. SAMEH

Center for Supercomputing Research and Development
University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

1. Introduction

We present some of the work in progress at CSRT for the solution of elliptic (Laplace, Poisson, and
more general) partial differential equations on the Cedar system. The decribed algorithms are block
cyclic reduction, boundary based domain decomposition, and conjugate gradient. These algorithms
take advantage of the parallelism and vectorization available on the vector multiprocessors which
constitute a single Cedar cluster. We discuss the effect of the memory hierarchy on performance and
study some implementation issues for multiple clusters. For a detailed explanation of the numerical
algorithms involved we refer to [10, 9, 8, 18].

2. Computational Environment

The Cedar system of the University of Illinois is characterized by the hierarchical organization of
both its computational capabilities and memory system. It consists of multiple clusters, each of
which is a multivector processor comprising 8 computational elements (CE’s) (see Figure 1). Thus
parallelism can be exploited at three levels. Within each CE, operations on vectors can be done in
vector mode, then, as each cluster s a tightly coupled multivector processor, fine grained parallelism
can be exploited. TFinally, the clusters can be used for medium and large grain parallelism (and
certain types of fine grain parallelism). Presently, each cluster is a modified Alliant FX/8.

The memory organization is hierarchical as well with communication increasing in cost at each
level. At the lowest level each CE has a set of private scalar and vector registers. The next
two levels, a caclie and cluster memory, are shared by the CE’s within the same cluster. Finally,
all clusters have access to a large global memory. This global memory is accessed through two
unidirectional switching networks, one for downloading data from memory, the other for uploading.
These switching networks are 2-stage omega networks built from 8 x 8 cross-bar switches. For a
more detailed description of the Cedar system see [14].

The Cedar operating system, Xylem, 1s a modification of Alliant’s Concentrix operating system
extended for multitasking and virtual memory management of the Cedar memory hierarchy ([5,17]).
A Xylem process consists of one or more cluster-tasks. Multiple cluster-tasks execute asynchronously
across the Cedar system. Xylem provides system calls for starting and stopping tasks, and waiting
for tasks to finish. System calls are also provided for coarse-grained inter-task synchronization.
In addition to multitasking, Xylem supports multiprogramming whereby multiple processes can be
executing simultaneously. In addition to multitasking, Xylein supports multiprogramming whereby
multiple processes can be executing simultancously. The Xylem virtual memory system provides
convenient access to the Cedar physical memory hierarchy.

Fortran is the focus of language and compiler development for Cedar because of its domi-
nance in scientific programming. Cedar Fortran is derived from Alliant FX/Fortran with extensions

2 E. Gallopoulos and A. Sameh

for memory allocation, concurrency control, multitasking, and synchronization [11]. New data type
specification statements reflect the Xylem memory access and locality structure. Vector concurrency
is available through array section notation, conditional vector statements, and vector reduction func-
tions. DOALL and DOACROSS constructs specify parallel execution of loop iterations on processors
within a single cluster task or spread across multiple cluster tasks. Multitasking routines provide an
interface between Cedar Fortran and Xylem for task creation and control. A set of synchronization
functions allows access to the Cedar hardware synchronization primitives. Cray-style synchroniza-
tion operations are also provided. Multitasking and synchronization routines are implemented as
part of a Cedar Fortran run-time library. Compiler optimizations for vectorization, parallelization,
and memory allocation are being developed for the Cedar machine based on the Parafrase restruc-
turer ([15]).

!’ 3] EX]3| e—
l / MEMORY
ICACHB ICACEB —I CLUSTER 2 —d
I 7/ T\ GLOBAL
I MEMORY BUS CLUSTERS [+ HEMORY
—d
CLUSTER 4
SHARED NETWORK —
CACHE INTERFACE e
TO GLOBAL
INTERCONNECTION
NETWORK
GLOBAL
CROSSBAR SWITCH INTERCONNECTION
NETWORK
a) Cedar Cluster b) Four cluster Cedar

Figure 1. Cedar cluster and multicluster organization

3. Dense Matrix Computations on Cedar

A large effort has been made to develop efficient dense matrix operations for a single Cedar cluster
([2]). Tt quickly became apparent that the memory hierarchy - in this case the Alliant vector
registers, cache and main memory - could penalize performance unless algorithms with sufficient
data locality were developed ([7]). This led to exploiting the concept of block algorithms and
the design and implementation of BLAS3 ([13, 6]). Indeed, algorithms designed based on BLAS3
kernels demonstrated impressive speedups on a single cluster. Curve QR1 in Figure 2 shows the
performance improvements for QR factorization on 8 CEs of the Alliant FX/8 when a BLAS3 based
block Householder algorithm is used as opposed to BLAS2 (curve QR2) and BLAS1 (curve QR1)

([12)).

Solving Elliptic Equations 3

0 300 600 900 1200 1500
matrix dimension

Figure 2. Using QR and BLAS3 ([12]).

4. Block Cyclic Reduction
The discretization of the separable elliptic equation

o r o
a(z)% +b(z)g—z+c(z)u+al,;:f(x,y) (1)
with Dirichlet boundary conditions and a five-point stencil on a naturally ordered n x m grid defined
on a rectangular region leads to a system of the form Au = f. In this case A is the n block tridiagonal
matrix diag[—1, A, —I], where A, I are respectively tridiagonal and identity matrices of order m.
Block cyclic reduction (BCR for short) dates from the work of Hockney and was presented in
[3] in its stabilized form due to Buneman. The work in [21, 20, 19] resulted in the development
of FISHPAK, a package based on BCR for the solution of (1) and extensions thereof. BCR is a
rapid elliptic solver (RES) having sequential computational complexity O(rmlogn). Assuming that
n = 2% — 1, the idea of the method for reduction steps r = 1,...,k — 1 is to combine the current
2k=r+1 _ 1 vectors into 2¥=7 — 1 ones, and then solve a system of the form

pars(AX =Y

dy

where Y € R™*(2*""=1 and par—1(A) is a Chebyshev polynomial of degree 2"=! in A. Since its
roots)\Sr_” are known, it can be written in product form, where each factor is tridiagonal. Hence
the system to be solved becomes

gt

r—1)]

T (A= A D] eaner_] = (3] lgosmr).)

i=1
Clearly as r increases,the effectiveness of a parallel or vector machine to handle (2) decreases rapidly.
A parallel version of BCR was recently discovered ([22,10]). In summary, the method is based in
expressing the matrix rational function [par—1(A)]~! as a partial fraction, i.e. as a linear combination
of the 2"~! components (4 — /\E-'V_I)I)‘l.

qr—1

r—1 r=1) py—
el ez o] = 3 ol ™A= ATTVD T] Jyas-e], (3)

i=1
Coeflicients af-r_l) are equal to 1/(1)’2,_,(/\5r_1))) and can be derived analytically. Figure 3 shows
the performance of the parallel and standard BCR on the Alliant FX/8.

4 E. Gallopoulos and A. Sameh

1
1

Time (sec)

Lz s amim 4 s cnme wime e a2V wme o
)
A

0 100 200 300
Number of blocks n

Figure 3. Parallel and standard BCR on n x n grid on Alliant FX/8

One very important trend in parallel processing is the development of powerful restructuring
compilers, which would minimize the need for manual tuning when porting codes to parallel machines
([15]). FISIHPAK subroutine hwscrt, which performs block cyclic reduction for rectangles in Cartesian
coordinates, presents many challenging issues to the restructurer especially when oriented towards a
system with a computational hierarchy. The data dependencies in hwscrt typically make very difficult
the automatic recognition of more than one level of loop parallelism. Figure 4 shows part of the
(manually restructured) code corresponding to the #* step of the parallel version of the reduction.
We observe that even here, which of the loops to vectorize and which to make exploit the concurrency
depends on the relation between the lengths of the inner and outer loops, which in turn depends on
r. Advanced compiler techniques such as loop interchanging ([23]) and generation of multiple version
loops ([4]) would be useful to generatc efficient code. Even such techniques, however, are not fully
adequate in the context of Figure 4, since depending on r and m, a different multiple tridiagonal
solver may be chosen. For our experiments we have generated manually multiple version loops. The
most appropriate version of each loop to be used at every step of the computation was chosen after
performance comparisons.

c this is part of step r of the reduction

¢ currently jst = 2%%(r-1), 1 = 2%*r, jsp = 2%*k-2%*r

do j=1,jsp,1

do i=1,m
d(i,j) = q(4,j)-q(i,j-jst/2)-q(i,j+jst/2) +q(i,j-jst)+q(i,j+jst)
e(j/1,i) = d(4,j)+q(i,j)-q(i,j-jst-jst/2)-q(i,j+jst+jst/2)
q(i,j) = d(4,3)
enddo
enddo

c solve for jsp/l right hand sides, each corresponding to jst tridiagonals
call tridiagonal-solver

Figure 4. Code fragment for parallel BCR

The computational kernel for the algorithm is the multiple tridiagonal system solver, together
with DAXPY (a «— a+ sb) (cf. Figure 6) or DOTPRODUCT (cf. Figure 5) for the combination of the
partial fraction terms. The number of data loads for the first two is within a small constant factor
from the number of operations, resulting in turn to poor cache utilization and lower performance
for the entire algorithm.

Solving Elliptic Equations 5

Mflops

8000 16000 24000 32000 40000
vectorlength

Figure 5. DOTPRODUCT out of cache and out of memory [18]

20
- e a«—a-+ sb
15 — — c—a+sb
Mflops ' '
10
L NI S A |
8000 16000 24000 32000 40000

vectorlength
Figure 6. DAXPY out of cache and out of memory [18]

4.1. Multicluster algorithim

We assume initial Cedar configurations of P = 2 or P = 4 clusters and n = 2¥ — 1. Minimizing
intercluster communication time and partitioning the problem across clusters so that each one is
doing useful work are keys to an eflicient implementation. Since the tridiagonal matrix A is the seed
for all the computations we can assume that at the start of the computation it is copied in each of
the two cluster memories and remains there. In Cedar terminology, A has the CLUSTER memory
attribute. The total number of tridiagonal systems to be solved in step r is 2¥=! —27=1. This is due
to the (28—" — 1) right-hand-sides, each to be solved with 2"—! matrix coeflicients.

A variety of cluster splitting strategies can be designed based on these observations. In the
simplest one we let each cluster solve the systems corresponding to (2¥=" — 1)/P of the righthand
side in (2). The problem with this strategy is that there will be workload imbalance between the
clusters. For example, when P = 2 then in steps 1,2,...,k — 1 there will be 1, 2, ...,2%=? more
systems to be solved in one of the clusters (the extreme is step k — 1 with the one cluster remaining
idle). The total load imbalance is thus 2= — 1 extra systems to be solved in the one of the
two clusters, which is clearly significant. Because of the synchronization between every step of the
computation, alternating the extra load between the 2 clusters is not a satisfactory remedy. Observe
that the problem occurs because we have chosen n = 2¥ — 1 to make the BCR algoritlim more
efficient whereas P is either 2 or 4. Another option is to base the distribution on the number of
coefficient matrices. Unfortunately this strategy involves substantial communication overhead at
each step due to required combination of the partial fractions.

A solution can be found by examining the algorithm from a finer-grain point of view, namely
(3). Now the total number of systems is 2'=! x (2=" — 1), which is exactly divisible by 2 and

6 E. Gallopoulos and A. Sameh

4 if » > 1 and r > 2 respectively. Ience, except for the first 1 or 2 steps, the same number of
systems (namely 27~1=196P » (2¥-7 _ 1)) can be assigned to each of the clusters, thus achieving
computational load balance. In this case, however, the partial fraction decomposition (3) for a few
vectors is calculated in stages. Once the systems corresponding to these vectors are solved, not all
the terms of the decomposition are in the samme cluster. Instead, the available terms are summed
in each cluster, followed by communication of each partial result to the appropriate cluster for the
final summation.

Figure 4 characterizes the combinations necessary during step r < k of the reduction, when
the algorithm is mapped on a single cluster. It reveals that column j of array ¢ needs to be
combined with columns j +27~1,j £ 272 j 4+ (27~! 4+ 2"=2). The values j takes at that step are
1x27,2x2,...,(2% " = 1) x 2". Distributing q uniformly across the P clusters it can be shown
that only few (e.g., three when P = 2) m vectors are needed in a cluster from the adjacent clusters
at each step.

5. Boundary Integral Domain Decomposition

A new method (BIDD) was recently proposed for the solution of Laplace’s equation ([9], [8]). The
method is characterized by the decoupling of the problem into independent subproblems on sub-
domains. An approximation u to the solution u is sought as a finite lincar combination of N

fundamental solutions ([16]) ¢;(z) = — o= log |z — wj| of VZu = 0:
N
. u(z) = Z oid;(z) 4)
j=1

For a given set of N points w; lying outside the domain, o € RV is computed to minimize ||g — Goll,
for some norm-p. G € R**N is the influence matrix consisting of fundamental solutions based at
wj for each boundary point. g € N consists of boundary values for u. Once ¢ has been computed,
the solution at any g points on the domain is u = Hea, with /1 € R**N being the influence matrix
for the yt points. Choosing these g points to be subdomain boundary points, the solution can be
computed by applying the elliptic solvers most suitable for each subdomain.

The only part of the computation which is not trivially decoupled is the computation of . This
1s performed on a single or across multiple clusters depending on the availability of a multicluster
solver which is efficient for these dimensions. For the remainder of this description we assume that
o has to be computed on a single cluster by means of the block Houscholder-based QR algorithm
(cf. Figure 2). After some initialization work, a task is started on each cluster (using ctskstart).
Each task computes its share of H and the grid coordinates on (private) CLUSTER variables.

Whether a similar split of the computation should be performed for G and ¢ depends on the
communication and event synchronization overhead required so that the cluster responsible for the
computation of ¢ receives all remaining sections of GG and g. Each cluster task allocates space for its
own copy of o. All tasks not responsible for ¢ wait for it to become available (e.g. calling evwait).
Once o is available in the responsible clusters, it is copied to a GLOBAL variable in global memory
and signals the other tasks (e.g. evpost) to continue. Each task copies ¢ from global memory to
the corresponding cluster variable and proceeds. In [8] it was shown that by allowing each task to
do a little more work, it can compute its own boundary (interface) values, thus eliminating the need
for any further communication. A suitable elliptic solver is then applied to each of the subdomains.
Aside from the self-evident advantage of complete decoupling which in turn allows each cluster to
be used for each subdomain with no intercluster communication, there is the added advantage that
the domain can be partitioned to subdomaius which are small enough so that any computation with
any data locality in the subdomain solver can exploit the cache effectively. It is also worth noting
that the efficient computation of the elements of G and I{ strongly depends on the availability of
fast routines for the computation of the logarithm of an array of values. Other such elementary
functions will be required in the case of operators with different fundamental solutions (cf. 8, 1]).

As an example of the issues involved, we cite [8], where horizontal strips were used for the
decomposition when solving Laplace’s equation on a rectangle. This approach was driven from

Solving Elliptic Equations 7

the expression O(nmlogn) characterizing the sequential computational complexity of BCR. Siue
reductions in the n direction are expected to contribute more heavily in the reduction of the time
required to solve the problem. Figure 7 shows the expected behavior of BIDD when the domain is
partitioned into p horizontal strips and P = p clusters are used.

20 |

Tp(sec) 10

0-||||In|n|l IFTl FERTE SEETE FEUTE FUSTE FRUTE SUTIS SUTRE U
0 2 4 6 8 10
Number of strips and clusters (P = p)

Figure 7. Estimated parallel time, v = 1680, n = 418, N = 40.

Tp(sec) "

|

I

I

b

8 10
Number of strips and clusters (P = p)
Figure 8. Estimated parallel time, v = 1680, n = 418, N = 40, and parallel] BCR.

In [8] it was also observed that with the parallel version of BCR described in Section 4, the
expected performance improvements on more than 1 clusters are considerably reduced (cf. Figure 8).
The slopes of the curves of Figure 3 and figures in [10] show that the time for the parallel algorithm
is much less sensitive to changes in the number of blocks n. Instead, reductions in the size (m) of
the tridiagonal systems weigh more heavily.

This is demonstrated in Figures 9 and 10, where the method is applied on a n x n square with
4n collocation points, using N = 40 fundamental solutions and splitting into 2 horizontal and 2
vertical strips respectively. Note that the effect of vertical stripping is equivalent with the horizontal
if vertical instead of natural ordering is used. In any case, the results indicate that BIDD, is also
useful for speeding up the solution corresponding to a simple domain on which a rapid elliptic
solver like BCR is directly applicable. Moreover, performance considerations following from the
architecture indicate strong preflerence for the one instead of the other decomposition.

6. Conjugate Gradient Methods

More general elliptic equations on more complicated domains are handled by means of Conjugate
Gradient methods (CG), frequently combined with a preconditioner (PCG) to modify the spectrum
and reduce the number of iterations to convergence. The computational kernels in CG are the
DOTPRODUCT, DAXPY, and pentadiagonal matrix-vector multiply. From Figures 5, 6 and 11 and
the discussion in Section 4, low performance does not come as a surprise.

E. Gallopoulos and A. Sameh

Time (sec)

gridsize

Iigure 9. Horizontal strips
I, total FX/8 time; 11, parallel BCR; I1I, expected 2-cluster time.

Time (sec)

gridsize

Figure 10. Vertical strips
[, total FX/8 time; 1, parallel BCR; 111, expected 2-cluster time.

