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C’est avec gratitude et admiration que nous dédions ce volume &
Jacques Azéma,

a l'occasion de son 65° anniversaire. Ses travaux, parmi lesquels ceux sur
le retournement du temps, le balayage, les fermés aléatoires et bien sir la
martingale d’Azéma, ont prolongé, toujours avec originalité et élégance, la
théorie générale des processus.

Son apparente décontraction, sa réelle rigueur et ses incessantes questions
(“his healthy skepticism”, comme I’écrivait J. Walsh dans Temps Locaux), ont
été indissociables du Séminaire de Probabilités pendant de nombreuses années.

-

We are also indebted and grateful to Anthony Phan, whose patient and
time-consuming work behind the scene, up to minute details, on typography,
formatting and TEXnicalities, was a key ingredient in the production of the
present volume.

Volume XXXIX, which consists of contributions dedicated to the memory
of P. A. Meyer, is being prepared at the same time as this one and should
appear soon, also in the Springer LNM series. It may be considered as a
companion to the special issue, also in memory of Meyer, of the Annales de
I'Institut Henri Poincaré.

Finally, the Rédaction of the Séminaire is thoroughly modified: J. Azéma
retired from our team after Séminaire XXX VII was completed; now, following
his steps, two of us—M. Ledoux and M. Yor—are also leaving the board.

From volume XL onwards, the new Rédaction will consist of Catherine
Donati-Martin (Paris), Michel Emery (Strasbourg), Alain Rouault (Versailles)
and Christophe Stricker (Besangon). The combined expertise of the new mem-
bers of the board will be an important asset to blend the themes which are
traditionally studied in the Séminaire together with the newer developments
in Probability Theory in general and Stochastic Processes in particular.

M. Emery, M. Ledoux, M. Yor
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Tanaka’s Construction for Random Walks and
Lévy Processes

Ronald A. Doney

Department of Mathematics, University of Manchester
Oxford Road, Manchester, UK M13 9PL
e-mail: rad@maths.man.ac.uk

Summary. Tanaka’s construction gives a pathwise construction of ‘“random walk
conditioned to stay positive”, and has recently been used in [3] and [8] to establish
other results about this process. In this note we give a simpler proof of Tanaka’s
construction using a method which also extends to the case of Lévy processes.

1 The random walk case

If S is any rw starting at zero which does not drift to —oo, we write S* for

S killed at time o := min(n > 1: S, < 0), and ST for the for the harmonic

transform of S* which corresponds to “conditioning S to stay positive”. Thus

forx >0,y >0, and r =0 when n =0
V(y)

P(Sp41 € dy| S} = 2) = 05 P(Sui1 € dy| Su = )

%4

= % P(S; € dy—=x),
(1)

where V is the renewal function in the weak increasing ladder process of —5.

In [10], Tanaka showed that a process R got by time-reversing one by one

the excursions below the maximum of S has the same distribution as ST;

specifically if {(Tk, Hi),k = 0} denotes the strict increasing ladder process of

S (with Ty = Hy = 0) then R is defined by

Tr41

Ro=0, R, = Hy + > Yii Th<n<Tiy1,k>0. (2)

i=Tkt1+Tr+1—n
If S drifts to +o00, then it is well known (see [9]) that the post-minimum

process

—
S :=(Syen—S75,n>0), where J= max{n 0 S, = minS’,-} (3)

r<n

also has the distribution of ST. In this case a very simple argument was given
—
in [7] to show that the distributions of R and S agree, thus yielding a proof of
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Tanaka’s result in this case. The first point of this note is to show that a slight
modification of this argument also yields Tanaka’s result in the oscillatory
case, without the somewhat tedious calculations in [10].

To see this, let S be any random walk with Sy = 0, S, = Y'Y, for
n > 1, introduce an independent Geometrically distributed random time G
with parameter p and put J, = max{n < G : S, = min,<, Sr}. In [7] a
time-reversal argument was used to show that

s}

(SJ},+H — SJP, 0 <n< G- Jﬂ)
D ¢ o
— [6](p),,6K(p)],

where 8, (p), ..., 0k (p) are the time reversals of the completed excursions be-
low below the maximum of S(p) := (S¢—Sa_n, 0 < n < G), and [...] denotes
concatenation. Note that the post-minimum process on the left in (4) has the
same distribution as (S,, 0 < n < G|o > G). Now in Theorem 1 of [4] it was
shown that ST is the limit, in the sense of convergence of finite-dimensional
distributions, of (S,, 0 < n < k|o > k) as k — oco. (Actually [4] treated the
case of conditioning to stay non-negative, and minor changes are required
for our case). However it is easy to amend the argument there to see that
as p | 0 this post-minimum process also converges in the same sense to ST.
Specifically a minor modification of Lemma 2 therein shows that

P T =0,
111})11}Pf P{S, > 0.n <G} > V(x), x>0

and the rest of the proof is the same. Noting that d; (p),.-. O (p) are indepen-
dent and identically distributed and independent of K, and that 51([)) 23 1

and K 5 00 as p | 0, we conclude that ST 2 [61.02,...] 2 R, which is the
required result.

2 The Lévy process case

The main point of this note is that, although the situation is technically
more complicated, exactly similar arguments can be used to get a version of
Tanaka’s construction for Lévy processes.

We will use the canonical notation, and throughout this section P will be a
measure under which the coordinate process X = (X;, t > 0) is a Lévy process
which does not drift to —oo and is regular for (—oc,0]. For z > 0 we can use
a definition similar to (1), with V replaced by the potential function for the
decreasing ladder height subordinator to define a measure IP,L corresponding
to conditioning X starting from z to stay positive. But for x = 0 we need to
employ a limiting argument. The following result is an immediate consequence
of results in Bertoin [2]; see also Chaumont [5].
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Theorem 1 (Bertoin). Let 7 be an Exp(p) random variable independent of
X, and put
Jy=sup{s <7: X, =X} where X =inf{X,:u< s}

Write I_P;W for the law of the post-minimum process {X,;p +s—-X;,0<s5<

T — Jp} under Py; then for each fized t and A € F;
lim P {A} = PT{A},

pl0

P’

where P! is a Markovian probability measure under which X starts at 0 and
is such that the conditional law of X, ., given X, = x > 0, agrees with P).

Remark 1. It has recently been shown that, under very weak assumptions, P
converges to P! as x | 0 in the sense of convergence of finite-dimensional
distributions. See [6].

Next, we recall another result due to Bertoin which is the continuous time
analogue of the result from [7] which we have stated as (4). Noting that (2)
can be written in the alternative form

R, = S"1'1\-+| + (SY B S) T <1 & T,

Ti+Tyyr—n’
we introduce X, = sup, . X, and
g(t) =sup(s <t:X,= X,), d(t) =inf(s > t : X, = X,),

the left and right endpoints of the excursion of X — X away from 0 which
contains ¢, and define Ry = X1y + Ry, where

Ry = (X =X) iy rgy—n— i D) > g(t),
if d(t) = g(t).
We also introduce the future infimum process for X killed at time 7 by

Xy =inf{X,:t S5 <7}

and note that X¢ = X, . The following result is established in the proof of

Lemme 4 in [1]; note that, despite the title of the paper, this Lemme 4 is valid
for any Lévy process which drifts to +o00, and the result for the killed process,
which is what we need is clearly valid for any Lévy process.

Theorem 2 (Bertoin). Under Py the law of {(Ri, X40)),0 < t < g(7)}
coincides with that of

{((X - X)J“_;_tﬂ ):(J,,+1 - ):(”)' 0<t <71 — J,,}.

Of course, an immediate consequence of this is the equality in law of
{R;, 0 <t<g(r)} and {X.]p.*.f - X, 0<t <1~ J,,}.

Letting p | 0 and appealing to Theorem 1 above we deduce
Theorem 3. Under Py the law of {R;, t = 0} is PT.
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Some Excursion Calculations
for Spectrally One-sided Lévy Processes

Ronald A. Doney

Department of Mathematics, University of Manchester
Oxford Road, Manchester, UK M13 9PL
e-mail: rad@maths.man.ac.uk

1 Introduction.

Let X = (X, t > 0) be a spectrally negative Lévy process and write ¥ and
Y for the reflected processes defined by

Yi=X, - I, )A/tISt-Xc, t>0,

where
St —Osglizt(OVX_q), I _ogfgt(O/\Xs)'

In recent works by Avram, Kyprianou and Pistorius [1] and Pistorius [8]
some new results about the times at which Y and Y exit from finite intervals
have been established. The proofs of these results in the cited papers involve
a combination of excursion theory, Itd calculus, and martingale techniques,
and the point of this note is to show that these results can be established
by direct excursion theory calculations. These calculations are based on the
known results for the two-sided exit problem for X in Bertoin [3], together
with representations for the characteristic measures n and 7 of the excursions
of Y and Y away from zero. The representation for n has been established
by Bertoin in [2] and that for i follows from results in Chaumont [4], (for a
similar result for general Lévy processes see [5]), and are described in the next
section.

2 Preliminaries

Throughout we assume that X = (X;, ¢t > 0) is a Lévy process without
positive jumps which is neither a pure drift nor the negative of a subordinator,
and we adopt without further comment the notation of Chapter VII of [2].
In particular ¢ and @ denote the Laplace exponent of X and its inverse,
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and W denotes the scale function, the unique absolutely continuous increasing
function with Laplace transform

/00 e MW (x)de = A > 9(0).
0

1
PY(A)’
The scale function determines the probability of X exiting at the top or
bottom of a 2-sided interval, and the g-scale function W (%) which informally
is the scale function of the process got by killing X at an independent Exp(q)
time, determines also the distribution of the exit time. Specifically W (@) de-
notes the umque absolutely continuous increasing function with Laplace trans-
1

form -
=z 117(q) —
e W\ (z)de = ——,
I @ de = oy =

and for convenience we set W(®(z) = 0 for z € (—o00,0). We alsé need the
“adjoint scale function” defined by Z(?)(z) = 1 for < 0 and

A>d(q), ¢ =0, (1)

ZW() =1+ q/ /W(Q) (y) dy for x > 0. (2)
0

Extending previous results due to Emery [6], Takacs [11], Rogers [9], and
Suprun [10], in [3] Bertoin gave the full solution to the 2-sided exit problem
in the following form:

Proposition 1. Define for a > 0 the passage times

T,=inf(t>0:X,>a), T,=inf(t>0:-X;> a).

Then for 0 < x < a we have
w (@) (;r)
qT, .
E.(e”9T,T, < Tp) = W@(a)’ (3)
and (a) (9)
s W@ () 7z
E, (e‘QTo; Ty < Ta) — z(a) (z) — __M (4)

W (a) (a)

Furthermore let U (@) denote the resolvent measure of X killed at the exit time
0q =Ty N Tg, then UD has a density which is given by

w (@) (:5)

W@ (a) WWD(a—y)-WD(z—y), z,y€(0,a). (5)

ul?(z,y) =

Remark 1. Suppose that P* is a measure under which X is a Lévy process
having the same characteristics as under P except that II is replaced by

I%(dz) = I(dz) 11> oy + 1T ((—00, —a)) 6_a(dz),



Some excursion calculations for spectrally one-sided Lévy processes 7

where d_,(dz) denotes a unit mass at —a. Then it is clear that up to time o,,
X behaves the same under P* as it does under P. Thus the righthand sides of
(3) and (4) are unchanged if W9 is replaced by W (@, the scale function for
X under P?. It then follows that we must have the identity

W(Q)(.T) = W(”)“(m) for 0 <z < a.

Note that the behaviour of Y and Y up to the time that they exit the interval
[0, a] is also the same under P* as it is under P.

Remark 2. The probability measures P and P# are said to be associates if X
is also a spectrally negative Lévy process under P# and there is a constant
0 # 0 such that

P#(X, € dz) = e’* P(X, € dz), —00 < < 00._

It is known that if X drifts to —oo under P then P# exists, is unique, and
d = ®(0) > 0 is a zero of ¥. (See [2], p. 193.) On the other hand, if X drifts
to oo under P then P# may or may not exist; if it does it is unique, and § is a
negative zero of 1. In both cases the corresponding scale functions are related
by W#(z) = e**W (z). Note that if the Lévy measure is confined to a finite
interval, as IT® is in Remark 1, then () exists for all real A, and if E X; # 0
then it has 2 real zeros, so the associate measure exists.

We also need some information about the excursion measures n and 7 of
Y and Y away from zero. (n.b. this notation is the opposite of that in [2]).
In what follows it should be noted that whereas 0 is always regular for (0, 00)
for Y, it is possible for 0 to be irregular for (0,00) for Y. (This situation was
excluded in [8].) In this case we adopt the convention outlined on p. 122 of [2],
which allows us to assume that Y has a continuous local time at 0.

In the following result ¢ denotes the lifetime of an excursion and Q, and
Q= denote the laws of X and —X killed on entering (—oc, 0) respectively.

Proposition 2. Let A € F;,t > 0, be such that n(A°) = 0 (respectively
n(A°) = 0), where A° is the boundary of A with respect to the J-topology
on D. Then there are constants k and k (which depend only on the normal-
izations of the local time at zero of Y and Y ) such that

Q.(4)
Wi(x) ’

(6)

n(A,t<g)= kl,if’(}

and, assuming further that if X drifts to +oo under P then the associate

measure P# ezists,
. (A
A(A, t < ¢) = e lim &)
0 T

(7)



8 Ronald A. Doney

Proof. According to Propositions 14 and 15, p. 201-202 of [2] for any A € F;
we have

n(A, t <) =kE(W(X;)™; A), (8)

where P! is the weak limit in the Skorohod topology as = | 0 of the measures
P! which correspond to “conditioning X to stay positive”, and are defined by

Pl(X; € dy) = %Qm()(} € dy), x>0,y>0.

Combining these results and using the assumption on A gives (6). The proof
of (7) is similar. If X does not drift to +o0o0 under P the potential function of
the increasing ladder height process is given by

fa if E X, =0,
Vig)= {1 —e 0 fEX; <0, :

so that V(z) v~ ¢z as z | 0 in both cases. The analogue of (8) is
A(A, t <s)=kET(V(Xy)™Y A)
where, by Theorem 6 of [4], P*! is the weak limit of the measures

V(y)
P*T(X, € dy) = ——= Q*(X, € dy), x>0,y >0.
T ( t y) V(.’E) ’I'( t y) Y
If X does drift to +o0o under P then it is easy to check that, with e = (g(¢),
t > 0) denoting a generic excursion and 7# denoting the excursion measure
of Y under the associate measure P#,

(A e(t) edy, t <¢) = e v at (A4, e(t) € dy, t <). (9)

Since X drifts to —oo under P# we can apply the previous result and the fact
that
Qi (X € dy) = e QF*(X¢ € dy)

to complete the proof. O
Remark 3. One way to check (9) is to use our knowledge of the Wiener-Hopf
factors and equation (7), p. 120 of [2] to compute the double Laplace trans-
forms of n(e(t) € dy, t < ¢) and e ¥a#(e(t) € dy, t < ).

We also need some facts about W(®):

Lemma 1. (i) limgo %)S) =1y

(ii) If X has unbounded variation then W' (z), the derivative with respect
to x of W9 (z) exists and is continuous for all x > 0.
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(iii) If X has bounded variation let D denote {x : II has positive mass

at —x}. Then lViqy(I) and WSQ)’(I), the right and lefthand derivatives of
W9 (x) exist at all x> 0, agree off D, and

liin WLQ)/(y) = Wiq)/(x) for all x € D.
yla

Proof. (i) This follows from the expansion

oo

WO(z) = ¢ whk(a), (10)
k=1

where W(**) denotes the k-fold convolution of W, together with the bound

:lTk'_l W(l‘)k

(k*).' <
W s =y

k>1,z>0. .
(ii) Provided X does not drift to —oo under P, we have the representation

Wi(z) = cexp(— /:O n(h(e) > t)dt),

(see [2], p- 195). As pointed out in [8], this implies that
Wi (z) = W(z)n(h(e) > x), W' (z) = W(z)n(h(e) > z),

and the result follows when ¢ = 0 since n has no atoms in the case of un-
bounded variation, (see [7]). If X does drift to —oo under P we use the device
of the associate measure P# introduced in Remark 2. Since X drifts to oo
and has unbounded variation under P#, it is easy to check that the result also
holds in this situation. The case when ¢ > 0 again follows easily, using (10).
(iii) In this case excursions of ¥ away from 0 start with a jump, and then
evolve according to the law of —X. Since 0 is irregular for (—oo, 0), this shows
that n(h(¢) = x) > 0 for all = € D, but the fact that X has an absolutely
continuous resolvent means that n(h(c) = x) = 0 for all z ¢ D, and this
implies the stated results for ¢ = 0. Again the results for ¢ > 0 follow easily,
using (10). O

To demonstrate the use of the above result, we calculate below the n and n
measures of a relevant subset of excursion space. Put h(e) := sup, €(¢) and
T.(e) = inf{t : £(t) > a} for the height and the first passage time of a
generic excursion € whose lifetime is denoted by ¢(¢), and with A, denoting
an independent Exp(q) random variable set A = B U C, where

B={e:h(e) >a, To(e) <sle) ANA;} and C ={e:h(e) <a, A <s(e)}.

Since we will only be concerned with ratios of n and n measures in the fol-
lowing we will assume that k =k = 1.
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Lemma 2. In all cases

_ Z(‘l)(a)
o W@ (a)’

(11)

and, provided that if X drifts to +o0o under P then the associate measure P#
exists,

(12)
Proof. Since ([2], p. 202)
. n(h(e) > z) = ¢/W(x)

is continuous, we see from (6) that

Q{T.edt}  PT,<Tp, T, €dt}
h T, =lim————— =
#lBle) > 4 Tule) € dt) 210 W(x) larlﬁ)l W(x)
and

QX edy, T, >t} P.{X; € dy, 0, > t}

d t) = lim =1li
nlew € dy, Tu(e) > t) = lim W (z) 10 W(z)
Thus
a=n(B)+n(C)=1lim—— ! (IE {eTa; T, <To}+P {44< 0o })
x10 W(z) “
. 1 .
= lim gy (1 - Bele™iTo < 1L},

Combining this with (4) gives

i L 29 29 W) Z29(a)
*= 210 W(x) W@ (a) 110 W(z) — WW(a)"

Note next that the results of Lemma 2.3 show that the right-hand side of (12)
is a cadlag function of a; since it is easy to see that the same is true of the
left-hand side, it suffices to establish these results for a ¢ D . In this case
we have n(h = a) = 0, so the required J-continuity holds and by a similar
argument we can use (7) and (3) to get

a = lim — (]Ea (eI Ty < Tu} + Pa-a{ly < 0u})
xz]0 T
= qT, .
111?(}:[(1 (L E{e ,‘T(L < TO})
(@(a @ _ w4
= 11111— W o C )| =T (a) O
10 T W(‘l (a) W@ (a)



