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PREFACE

The workshop 'Smoothing Techniques for Curve Estimation' has taken
place as part of the activities of the Sonderforschungsbereich 123,
"Stochastic Mathematical Models". The participants and the organizer
agree that it was a lively and successful meeting. Our thanks go to
the Deutsche Forschungsgemeinschaft for enabling this meeting as part
of the visiting program of the Sonderforschungsbereich 123. Our hope
is that the ties founded or strengthened during the meeting will con-

tinue to be fruitful.

Heidelberg, July 1979
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Some Introductory Remarks

Th. Gasser
Zentralinstitut flir Seelische Gesundheit
Abteilung Biostatistik
postfach 5970
D-6800 Mannheim 1

M. Rosenblatt
University of California, San Diego
La Jolla, California 92032/USA

The workshop on smoothing techniques for curve estimation was organized
because of the increasing theoretical and applied interest in such ques~
tions. Making a histogram of a data set is a time-honored tool in sta-
tistics as well as in other areas. The notion of representing and smooth-
ing data in more flexible ways arises naturally. Given any way of repre-
senting a function, one can adapt such a representation to give a method
of smoothing data. In this way one obtains attractive alternatives to a
parametric analysis. There is interest in nonparametric curve estima-
tion because parametric models require assumptions which are often un-
warranted and not checked when entering a new field in the empirical
sciences. The availability of computer equipment, especially with gra-
phics terminals,allow one to avoid undue assumptions and "let the data
speak for themselves".

We first make some historical remarks. One of the earliest papers to
suggest using kernel estimates of density functions was that of Rosen-
blatt (1356). A few years later on further results on the large sample
behavior of such estimates were obtained in Bartlett (1963) and Parzen
(1962) . Estimates making use of a Fourier representation were suggested
in a paper of Censov (1962). These techniques have been used by Tarter
and Raman (1972) in a biomedical context. Nearest neighbor estimates
have been proposed for density estimation in Loftsgaarden and Quesen-
berry (1965), and for regression analysis in Stone (1977). In a recent
paper of Mack and Rosenblatt (1979), the large sample behavior of near-
est neighbor density estimates is determined. Spline methods have also
been of considerable interest and were proposed as a basis for density
estimation in Boneva, Kendall and Stefanov (1971). The large sample pro-



perties of cubic spline density estimates are discussed in the paper

of Lii and Rosenblatt (1975). Both spline and kernel estimates are used
to estimate the probability density of the derivative of turbulent velo-
city readings. This is of interest in a modified model of Kolmogorov
where it is suggested that this probability density should be approxi-
mately log normal. This is not consistent with the analysis out in the
tails (say beyond three sigma) of the distribution. Spline estimates
have been used in an analysis arising in an archaeological context in
Kendall (1974). The use of nonparametric (say kernel) regression esti-
mates to deal with the important problem of calibrating radiocarbon and
bristlecone pine dates has been proposed in Clark (1974). The use of
kernel estimates for discriminant analysis in a multidimensional con-
text has been examined by Van Ness and Simpson (1976) and evaluated
favorably.

Ore of the important questions when dealing with such nonparametric esti-
mates is that relating to the choice of bandwidth or the degree of
smoothing. Papers of Rosenblatt (1971) and Bickel and Rosenblatt (1973)
have considered global behavior and global measures of deviation of
kernel density estimates. An elegant and powerful result of Komlos et

al (1975) is very useful in obtaining such results. Silverman (1978,
1979) has used related ideas and suggested an interesting way of choos-
ing a bandwidth based on them. A number of applications are discussed

in Silverman (1979).

We should now like to mention another area in which nonparametric curve
estimates have been useful, that of growth and development. The analy-
sis of the Ziirich longitudinal growth study (Stiitzle, 1977; Largo et al
1978, Stiitzle et al 1979) is a case in point. The analysis started with
the classical problem of height growth, and in particular of the puber-
tal growth spurt. Polynomial models were recognized as unsuitable. The
logistic and the Gompertz functions have been used and compared (Maru-
bini et al, 1971), but do not fit well over the whole period of growth.
This limits the span of interpretation seriously. Bock et al (1973) have
proposed a double logistic model between 1 and 18 years of age (addition
of two logistic functions, associated with pubertal and prepubertal
growth respectively). The fit is not good, and there is an age-dependent
bias; the model has also led to gqualitatively dissatisfying 'facts': It
suggests that the difference between boys and girls resides primarily

in the prepubertal parameters, contrary to everyday experience, and that
the pubertal component starts in early childhood. Preece and Baines



(1978) recently introduced a parametric family which gives a better fit,
as measured by the residual sum of squares.

Smoothing procedures offer an alternative for obtaining a set of inter-
pretative parameters. Tanner et al (1966) carried out smoothing by eye,
a procedure which is time-consuming, not reprodutible and biased. (Tan-
ner et al, 1966) had a too accentuated pubertal spurt). The bias of
spline or kernel smoothing depends in a simple way on the function to
be estimated. In the Ziirich growth study, cubic smoothing splines (fol-
lowing Reinsch, 1967) have been used (Largo et al, 1978). The choice of
the smoothing parameter is critical and should ideally be determined
from the data. A cross-validation procedure suggested by Wahba and Wold
(1975) gave in general good results. A general feature of splines smooth~-
ing is the relatively high cost in computer time and/or core (particu-
larly annoying with large data sets encountered in neurophysiology).
This draws our attention to alternatives, as e.g. kernel estimates.
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A TREE-STRUCTURED APPROACH TO NONPARAMETRIC MULTIPLE REGRESSIQON

Jerome H. Friedman*
Stanford Linear Accelerator Center
Stanford, California 94305/USA

Introduction

In the nonparametric regression problem, one is given a set of vector valued variables
X (termed carriers) and with each an associated scalar quantity Y (termed the response).
This set of carriers and associated responses {Yi’li} {1<i<N) is termed the training
sample. In addition (usually at some later time), one is given another set of vector
valued variables {Zj} (1=3sM) without corresponding responses and the problem is to
estimate each corresponding response using the values of its carriers and the training
sample. That 1is:

?(;j) = Rule [Z;, (Y.X;} (1= isM)] (1< jsm),
The rule for performing the estimation is usually referred to as the model or regres-

sion function.

In addition to this basic predictive role, there are usually other data analytic goals.
One would like the model to reveal the nature of the dependence of the response on the
respective carriers and lend itself to easy interpretation in a similar manner to the
way parametric models often do via the fitted values of their parameters.

Binary Regression Tree

The nonparametric regression models discussed herein are based on binary trees. A
binary tree is a rooted tree in which every node has either two sons (nonterminal nodes)
or zero sons (terminal nodes). Figure 1 illustrates a simple binary tree.

root
@ Nonterminal node
D Terminal node Figure 1

*This work is part of a joint research effort by Leo Breiman, Jerome Friedman, Lawrence
Rafksy and Charles Stone. Work partially supported by the Department of Energy under
contract number EY-76-C-03-0575.



For these models, each node t represents:

1) a subsample St of the training sample,
2) a subregion Rt of the carrier data space,
3) a linear model Lt(g) = Ay~ X+B, to be applied to XER, .

(For the models discussed in this report, the subsample St’ represented by node t, is
Jjust the set of training vectors that 1ie in its corresponding subregion Rt')

In addition, each nonterminal node represents:
4) a partitioning or splitting of Rt into two disjoint subregions

R](t) and Rr(t)
(R](t) U Rr(t) = Rt and R](t) ﬂ Rr(t) = 0)
and a corresponding partitioning of St into two disjoint subsets

51(t) and Sr(t)'
The binary regression tree is defined recursively: 1let t0 be the root node and

St = entire training sample

Rt = entire carrier data space

Lto (X) = linear (least squares fit) of Y on X using Sto.
Let t be a nonterminal node with left and right sons 1(t) and r(t) respectively. Then

R](t) and Rr(t) are the subregions defined by the partitioning of t,

S](t) and sr(t) are the subsamples defined by the partitioning of t.

The linear models associated with the left and right sons are
derived from the parent model by modifying the dependence on
one of the carriers Jt:

Lice) = L * ag(e)XUg) * bygy
Lr(t) = Lt * ap(p)*(9g) + brgyy-
To construct the model one then needs:

1) a training sample {Yi’li} (TsisN)
[This allows the definition of the root node Re » Sy » Ly (X)1,
) () o

2) a splitting rule which consists of
a) a prescription for partitioning Ry into R](t) and Rr(t)
(S](t) and Sr(t))’
b) a prescription for updating the model (choosing values
for Jis ay(t)> ap(e) br(e)e Pr(t)?

to get L1(t) and Lr(t)
(thereby defining the two son nodes of t),



3) stopping (termination) rule for deciding when not to split a
node, thereby making it a terminal node.

Splitting Rule
The situation at a node that is to be split is depicted in Figure 2.

ReStly

1(t) r(t)

Rie)S1ee)t1(t) Re(t)3r(t)r(t)

Figure 2

One has the subregion (subsample) and model associated with the parent [Rt (St) and
Lt] and one would like to define the corresponding quantities for the two sons so as
to best improve the fit of the model to the training sample. Let

A 2

be the empirical residual sum of sgquares associated with the parent and ﬁl(t) and
ar(t) be the corresponding quantities for the two sons. Then

L = Q- Qg - Oy (3)
is an estimate of the improvement as a result of splitting node t. A reasonable goal

is then to choose the partitioning so as to maximize ft subject to possible 1imita-
tions such as continuity and computability.

Since L](t) and Lr(t) are linear models (on R](t) and Rr(tp and R](t) U Rr(t) = Rt’

one can think of [LT(t)’ Lr(t)] as a piecewise-linear model on Ry From (1)
Lice) = Ly = aqqe) X(g) + bygyy (a)

Lee) = L = ap(e) X(0g) + briy)



so that we want to choose the parameters on the RHS of (4) to best fit the residuals
r'i = Y'i - Lt(L'i) (1651') (5)
to the model associated with the parent node.

Consider the residuals (5) as a function of each of the carriers X{(j) in turn. If
Lt(i) provides an adequate description of the dependence of the response on X{j),
then there should be Tittle structure in the values of the residuals when ordered on
X(j). That is,a plot of r versus X(j) would resemble that of Figure 3a.

— x(j)

Figure 3a

On the other hand, considerable structure in the residuals (e.g., Figure 3b) would
indicate that Lt(g) does not provide an adequate description of the dependence of the
response on X(j).

Figure 3b



The example of Figure 3b indicates a possible quadratic dependence of the residuals
(and hence the response) on carrier X{j).

These observations motivate our splitting procedure. Each carrier X(j) is considered
in turn. For each, a (univariate) continuous piecewise linear model is fit to the
residuals from Lt(l). That is, the model

r a'IJ' [X(J) = Sj] + b- X(j) < 8.

J J (6)
3 [x{) - sj] + bj X(3) > s,

r
J

is fit to {r,, X;(3)} (i€Sy) by minimizing

-

k
-— s 3 2
QJ -'iil'l [r'i - a]j (X'i(J) = SJ) - bJ]
#S4 (7)
. 2
+1§k+] [ry - apy (503) - s5) - bs1

with respect to j, 350 Apjo bj, and s;. Here the Xi(j) are ordered in ascending
value and Xk(j) < sj and Xk+1(j) > Sj' That is, the best (in the least squares sense)
continuous piecewise linear fit (with s. as the knot) is made to the residuals versus
each carrier X(j) and the best fit {over the carriers) is chosen.

Let the optimum values found for j, a;., a.., b., s. be represented by J, a,, a_, b
13° %r3® ~j° 73 1 r

and s respectively. These solution values are used to both define the partitioning
and update the model:
For X € R;:

If X{(J) s s, then X € R-I(t)

If X(j) > s, then _& < Rl'r(t)

L](t) (x) = Lt(X) + a, [X{(d) -s]+b
Lege) () = LX) + a, [X(3) - ]+ b

(8)

If the model associated with the parent node is

3

51

Ly (X) =2 A(5) X(3) + B,

then from (8), the corresponding quantities for the son nodes are:
A1(t)(j) = Ar(t)(j) = At(J) j+d
A1(t)(J) = At(J) + 2,
Ar(t)(J) = At(J) +a,
Bi(t) =Bt -aps+b

Br(t) = Bt -a. s+ b.
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Thus, the models associated with the left and right sons differ from the parent and
each other only in their dependence on carrier J, and the constant terms are adjusted
for continuity at the split point s.

After the split is made and the model updated for the two son nodes, the above pro-
cedure is applied recursively to 1(t) and r{t) and their sons and so on until the
nodes meet a terminal condition. This stops the splitting making terminal nodes.
Starting with the root, this recursive procedure then defines the entire regression
tree.

Stopping (Termination) Rule

The recursive splitting described above cannot continue indefinitely. At some point,
the cardinality of the subsample #(St) will be too small to reliably estimate the pa-
rameters for defining the splitting and updating the model. Thus, a sufficient con-
dition for making a node terminal is that the size of its subsample is too small to
continue splitting.

Using this condition as the sole one for termination, however, can cause serious over-
fitting. Basically, a split should not be made if it is not worthwhile. That is,

it does not improve the model fit. The quantity ft (3) is an estimate of the improve-
ment in the fit as a result of splitting node t. This quantity is always positive,
indicating that the empirical residual sum of squares will always improve as a result
of choosing the optimum splitting. However, since the empirical residual sum of
squares s an optimistically biased estimate of the true residual sum of squares from
the model, a positive value for it does not guarantee a positive value for the true
improvement I.. A more reasonable criterion would be:

If ft > k accept split at t and continue, otherwise make t
a terminal node.

The quantity k is a parameter of the procedure, the interpretation of which is dis-
cussed below. Although lack of sufficient fit improvement (as estimated by Tt) is a
necessary condition for making t a terminal node, it is not sufficient. It is possi-
ble that a particular split, although not yielding much improvement itself, can make
it possible for further splitting to make dramatic improvements. This would be the
case, for example, if there were substantial interaction effects between pairs or sets
of carriers. A sufficient condition for making a node terminal would be if its split
and all further splits of its descendants yield insufficient empirical improvement.
This is illustrated in Figure 4.
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Figure 4

Here node t is split forming son nodes t] (which subsequently becomes terminal) and
t'. Right son t' is further split forming nodes ty and t3 which become terminal.
The improvement associated with node t (and all further splits) is then defined to
be

" - ~ -

I = - -
t = Q4 Qt1 Qt2

That is the difference between the empirical residual sum of squares at node t and

- Qta (10)

the sum of those associated with all terminal descendants of t. A reasonable condi-
tion for making t 2 terminal node is then

If ft < 2 k make t terminal, otherwise accept split at t, (11)

The factor of two on the RHS of the inequality comes from the fact that two splits
were required to form these three terminal nodes and this introduces even more optim-
istic bias than just one split. The condition (11) can be rewritten

If Qt + k< Qt1 + Kk + Qt +k+Q
2

+ k {12)
3

t
make t terminal,
Otherwise, accept split at t.
This suggests associating a cost Ct with each node t of the tree as follows:
If t is terminal €, =, + k a3)
If t is nonterminal C =.23 C .
ict i
where the summation is over all terminal descendants of t. The decision to make a
node terminal or not is then taken so as to minimize this cost. Note that if both
sons of t [1(t) and r(t)] are terminated according to this prescription, then
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This suggests the following "bottom-up" recombination procedure for terminating the
regression tree. First, the splitting procedure is applied as far as possible, ter-
minating only for insufficient subsample cardinality. The nonterminal nodes of the
resulting tree are then each considered in inverse order of depth. (The depth of a
node s the number of nodes in the path from it to the root.) At each such node, the
following termination rule is applied:

Lﬁ@t + k< C-I(t) + Cr(t)
then make t terminal and C, = Qt + K (15)

Otherwise accept split at t and Ct = C](t) + Cr(t)‘

This bottom-up recombination procedure insures that a node is made terminal only if
its splitting and all possible further splitting yields insufficient improvement to
the fit of the model, as determined by the improvement threshold parameter k.

This bottom-up recombination algorithm can be more easily understood intuitively by
considering the following optimization problem. Let.? be the set of all possible
trees obtained by arbitrarily terminating the splitting procedure of the previous
section. Let T&7 be one such tree and define its size |T| to be the number of its
terminal nodes. Let ﬁ(T) be the empirical residual sum of squares associated with

the regression model defined by T. The optimization problem is to choose that tree
Tk€§7] such that ﬁ(Tk) + k|T| is minimum (breaking ties by minimizing |T|). The quan-
tity k is a positive constant called the complexity parameter and Tk is said to be the
optimally terminated tree for complexity parameter k. The complexity parameter is the
analogue for this procedure to the smoothness parameter associated with smoothing
splines or the bandwidth parameter associated with kernal estimates. Since ﬁ(Tk) is
monotone decreasing with increasing [Tk[, the value of k 1imits the size of the re-
sulting optimally terminated tree Tk. Larger values of k result in smaller trees.

It can be shown (Breiman and Stone, 1977) that the bottom-up recombination procedure
described above is an algorithm for soTving this optimization probTem where the com-
plexity parameter k is just the improvement threshold parameter of that procedure.
Thus, although motivated heuristically, that procedure is seen to have a natural in-
terpretation in terms of generating optimally terminated trees Tk.
The complexity parameter k is the only parameter associated with this model. Ideally,
its value should be chasen to minimize the true residual sum of squares Q(Tk) asso-
ciated with the model. This quantity is, of course, unavailable since only the train-
ing sample is provided. One could apply crossvalidation (e.g., see Breiman and Stone,
1977) or bootstrapping (Efron, 1977) techniques to obtain a less biased estimate of
Q(Tk) than Q(Tk). These estimates could be performed for various values of k and the
best one chosen based on those estimates. However, this procedure is quite expensive
computationally and not always reliable. Fortunately, a simple graphical procedure



