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Preface

0.1. An Overview

My objective in writing this book is to offer to students of economics,
management science, engineering, and mathematics an in-depth look at some
of the fundamental features of a particular subset of general nonlinear
mathematical analysis called convez analysis. While the spectrum of topics
constituting convex analysis is extremely wide, the principle themes which
will be explored herein are those of duality, separation, representation, and
resolution. In this regard, these broad topic areas might even be referred to
as the mathematical foundations or basic building blocks of convex analysis.
Indeed, one could not reasonable expect to address, with even a modicum of
success, the theoretical aspects of matrix games, optimization, and general

equilibrium analysis without them.

A theme which occupies a key position in the area of convex analysis
is that of duality. This property asserts that convex structures have a dual
description, i.e., corresponding to each convex object A in a space of finite
dimension there is a dual object B belonging to the same space. In this
regard, if B is given, then A can be uniquely generated. For instance, given
a finite cone C, the cone polar to € is €t = {y|y'x > 0,x€C}. By taking the
polar of €t we recover C itself so that we may write € —C%t or € = (C+)+.
This specification of duality has its roots in the notion of separation, e.g.,
under a given set of assumptions it is possible to separate (disjoint) convex
sets by a hyperplane. In fact, most of the duality theorems encountered in
this work are proved by employing virtually the same set of separation

arguments.

Also playing an important role in convex analysis is the idea of

representation, i.c., there can exist proper subsets of elements of a convex set
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which possess all the information about the original convex set itself. For
example, knowing only the collection of extreme points of a convex polytope
allows us to fully determine the entire set by forming the convex hull of the
set of extreme points. In a similar vein, the theme of resolution, drawing
upon a finite basis argument, serves to decompose the elements within a
given convex set into the convex hulls (or conical hull as appropriate) of a
pair of disjoint finite point sets. That is, a point in a particular convex set
can, at times, be represented as the (vector) sum of points from two different
convex structures. For instance, a convex polyhedron is resolvable into the

sum of a polytope and a polyhedral cone.

Chapter 1 lays out the mathematical prerequisites. It is assumed
that the reader has had some minimal exposure to set theory as well as linear
algebra and matrices. This chapter begins with a review of essential concepts
such as: the Euclidian norm; linear dependence and independence; spanning
set, basis, and dimension; solutions sets for simultaneous linear systems
(treating both the homogeneous and nonhomogeneous cases along with the
detection of inconsistencies); and linear subspaces and their duals. It then
moves into the realm of point-set-theory and defines in considerable detail
notions such as; neighborhoods; open and closed sets; points of closure and
accumulations; convergence (in norm); compactness criteria; a linear variety

or affine set; affine hull; and affine independence.

In chapter 2 we consider the structure of convex point sets.
Specifically, the definition of a convex combination and convex set proper are
given along with the essential properties of the latter. Also included are:
Helly’s theorem (1921); Berge’s theorem (1959, 1963); the concept of a
convex hull; Carathéodory’s theorem (1970); and the relative interior of a
convex set. Convex sets and their properties are at the heart of convex

analysis and will be used extensively in the remainder of the text.
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Chapter 3 begins with a detailed discussion of hyperplanes and their
associated open and closed half-planes. After defining the characteristics of
weak, proper, strict, and strong separation, a set of theorems is advanced
which treats a variety of types of separation between a point and a set and
between two convex sets. In particular, these theorems posit conditions for
the “existence” of separating hyperplanes. = Of special interest is the
particular methodology used to execute most proofs of separation theorems.
As will be readily demonstrated in this chapter, the usual modus operandi for
dealing with the separation of two convex sets ¥;,¥, consists of redefining the
problem as one involving the separation of the origin from the convex set

?1_‘?2.

An additional set of theorems pertaining to the existence of
supporting or tangent hyperplanes is also included. Such theorems are
important because they allow us to characterize or “represent” a convex set ¥
in terms of its associated (finite) set of supporting hyperplanes at boundary
points on ¥. A representation of this type can be thought of as being of the

ezternal or outer variety.

The concept of separation holds a preeminent position in convex
analysis in that it serves as a major input in deriving certain theorems of the
alternative. A few of these theorems (involving disjoint alternatives framed
in terms of linear equalities and/or inequalities) are introduced in chapter 3
as an application of the separation concept. In particular, the theorems of
Farkas (1902) and Gordan (1873) along with one of Gale’s theorems (1960)
(dealing with the existence of a nonnegative solution to a system of linear
inequalities) are all developed and illustrated with the use of a strong
separation theorem. As the reader will soon note, Farkas’ theorem will be
used extensively throughout this work. In fact, it is actually introduced quite
early in chapter 1 as the basis for the specification of a criterion used in
detecting whether or not a simultaneous linear equation system is

inconsistent.
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Chapter 4 deals with the concepts of convex cones and finite cones,
with the latter also classified as convex. These structures serve the essential
function of geometrically illustrating the solution sets for homogeneous
systems of linear equalities/inequalities.  Also introduced are negative,
orthogonal, dual, polar, normal, support, and barrier cones along with the
process of determining the dimension of a finite cone. The concept of a ray
or half-line is used extensively as an element in the construction of finite
cones; its dual and polar serve to specify closed half-spaces. Properties of
convex and finite cones are fully explored and the duality property of finite
cones is amplified to theorem status, i.e., a duality theorem for finite cones is
proven using Farkas’ theorem (in fact, it is demonstrated that the duality
theorem is equivalent to Farkas’ theorem) and then directly related to the

concept of strong separation.

In order to explore the various (equivalent) ways of representing or
generating a finite cone, the concepts of a conical combination and conical
hull are introduced along with Carathéodory’s theorem for cones. Also
introduced are the notions of: extreme vectors (as well as extreme half-lines
and half-spaces); semi-positively independent set of vectors; extreme
supporting hyperplanes and half-planes; and extreme solutions of
homogeneous linear inequalities. ~All of this definitional material lends
support to the specification of a set of theorems dealing with the structure of
finite cones, e.g., we explore; Minkowski’s theorem (1910) (the intersection
of finitely many half-spaces is a conical combination of finitely many gen-
erators); a second theorem which states essentially that a finite cone can be
generated by using only its set of extreme vectors; and Weyl’s theorem (1935,
1950) (the set of conical combinations of a finite set of vectors corresponds to
the intersection of a finite number of extreme supporting half-spaces). In
fact, the theorems of Minkowski and Weyl serve to establish the so-called
sum cone and intersection cone equivalence. It is also observed that Weyl’s

theorem implies the duality theorem for finite cones (i.e., Farkas’ theorem)
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we well as Minkowski’s theorem. Moreover, the theorems of Minkowski and

Farkas in combination render an “indirect” proof of Weyl’s theorem.

Chapter 4 ends with a discussion of a couple of separation theorems
for convex cones. These theorems are then used to obtain an representation
theorem for a closed convex cone (i.e., any such cone is the intersection of the
set of homogeneous closed half-spaces which contain it). In addition, we
establish the notion that Farkas’ theorem can be cast in terms of finite cones
and then interpreted as a separation theorem for a cone and an individual

vector or a cone and an open half-space.

An important question often encountered in convex analysis is
whether or not certain dual homogeneous linear systems possess a solution.
This is the subject matter of chapter 5. Here we consider pairs of finite
systems of homogeneous linear equalities and/or inequalities in which the
variables are either nonnegative or unrestricted in sign. Moreover, these
systems are structured in a fashion such that there is a one-to-one
correspondence between unrestricted variables in one system and equations
in the other and between nonnegative variables in one system and
inequalities in the other. Under the aforementioned correspondence one can
pass from a given system of homogeneous linear inequalities and/or equalities
involving nonnegative and/or unrestricted variables to a second such system

and conversely.

The chapter begins with a lemma by Tucker (1956) for dual
homogeneous linear relations exhibiting a special positivity property and then
moves into the analysis of a battery of Tucker’s existence theorems (1956) for
similar pairs of dual systems. An additional set of existence theorems is
addressed which provides the foundation for the development of the concept
of complementary slackness in pairs of dual systems and in a specialized self-
dual system. Much of the material appearing in this chapter lends itself to

applications in the area of linear programming (especially where questions of
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the existence and uniqueness of solutions as well as their feasibility are

concerned).

The material developed in chapters 3-5 serves as the cornerstone for
the treatment of theorems of the alternative for linear systems presented in
chapter 6. Such theorems involve two mutually exclusive systems of linear
inequalities and/or equalities denoted as, say, (I) and (II). They then assert
that either system (I) has a solution or system (II) has a solution, but never
both. In addition, a transposition theorem, which is a special type of
theorem of the alternative, considers the disjoint alternatives of solvability or
contradiction given that in one system a vector is a linear combination of
vectors from the other. In fact, a transposition theorem can be viewed as the

algebraic counterpart of a separation theorem.

A whole host of important theorems of the alternative are discussed
and, as is appropriate, interpreted geometrically. Specifically, the theorems
included are those of: Slater (1951); Tucker (1956); Motzkin (1936); Gordan
(1873); Steimke (1915); Farkas (1902); Gale (1960); von Neumann (1944);
and Mangasarian (1969). Moreover, these theorems cover both homogeneous
as well as nonhomogeneous systems and consider solutions which may be
characterized as positive, nonnegative, semi-positive, or restricted to a convex
combination. The material offered in this chapter lends itself to a wealth of
applications in the areas of game theory and mathematical programming
(i.e., the specification of first-order optimality conditions in the presence of

constraints; nondifferentiable optimization; constraint qualifications, etc.).

The principal focus of chapter 7 is the determination of what are
called basic solutions (as well as basic feasible solutions) to systems of
nonhomogeneous linear equalities. After defining a basic solution, a step-wise
procedure for obtaining a set of basic variables is outlined and accompanied
by the process of “swapping” one basis vector for another so as to obtain a

different basic feasible solution. Here too a step-by-step summary algorithm
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is reported along with several detailed examples which serve to illustrate the
salient features of the calculations involved. Also included is a discussion on
the circumstances under which we can find at least one basic (feasible)

solution to a linear equation system.

Having developed the concept of a basic feasible solution to a linear
equation system, this chapter next explores the structure of the solution set
for the same. Let this set be denoted as ¥ = {x| Ax =b, x>0, xe€ R"}.
After specifying the form of the homogeneous system associated with ¥, a
resolution theorem is established which essentially states that any vector in ¥
is expressible as a convex combination of the set of basic feasible solutions
plus a homogeneous solution associated with the linear system. We next
examine extreme homogeneous solutions and then generalize the preceding
resolution theorem to take account of such solutions. Both resolution

theorems are structured so that ¥ may or may not be bounded.

The next topic in Chapter 7 deals with the development, via Farkas’
theorem, of a set of conditions which indicate when a mixed simultaneous
system of linear inequalities and equalities has no solution. After this comes
a section on complementary slackness in pairs of dual systems. In this
regard, sets of weak and strong complementary slackness conditions are
derived for general dual homogeneous systems; along with these, similar
conditions, in the form of a set of complementary inequalities, are derived for

a specialized self-dual system.

Chapter 8 begins with a discussion of extreme points and extreme
direction for general convex sets. It addresses the conditions which underlie
the existence of extreme points as well as the representation of a convex set
in terms of its collection of extreme points (i.e., we examine a theorem which
states that, under certain conditions, extreme points form a minimal subset
whose convex hull equals the set itself). Next considered are the concepts of:

recession and extreme directions of a convex set; recession and extreme half-
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lines; and the convex cone generated by a convex set. The extension of the
convex hull and affine hull concepts to sets which consist of both points and
recession directions is also included. This enables us to offer expanded
versions of the preceding representation theorem (a convex set can be
expressed as the convex hull of its set of extreme points and extreme
directions) and Carathédory’s theorem (also framed in terms of points and

directions).

We next study what are called “faces” of polyhedral convez sets (e.g.,
extreme points, facets, and edges are all types of faces). Before doing so,
however, it is important to determine what it actually means for a convex set
to be characterized as “polyhedral.” Following Rockafellar (1970), the
property of being polyhedral reflects the notion that a given set is the inter-
section of finitely many closed half-spaces, 1i.e., it is the solution set to some
finite system of linear inequalities. (Note that we obtain what is termed a
polyhedral convez cone if the said system is homogeneous,i.e., all bounding
hyperplanes pass through the origin.) In this regard, the quality of being
polyhedral imposes a “finiteness” condition on the outer or ezternal represen-
tation of a convex set (an n-dimensional closed convex set is the intersection
of its set of supporting or tangent closed half-spaces). Dually, a finiteness
condition can also be placed on the internal representation of a convex set
(here a polyhedral convex set can be represented as the convex hull of its set
of extreme points plus the conical combination of its set of extreme direc-
tions). We may note further that if the polyhedral convex sets under
discussion are bounded, then they are called convez polytopes. Relative to
the discussion of polyhedral faces mentioned above, the topics covered are:
degenerate and adjacent extreme points; the dimension, minimual represen-

tation, and affine hull of a convex polyhedron; and proper face structures.

The preceding bit of material on convex polyhedra, along with some

of the developments in chapter 7, now sets the stage for determining the
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location of extreme points. In particular, we posit a necessary and sufficient
characterization of an extreme point by demonstrating that there exists a
one-to-one correspondence between basic feasible solutions to the equalities
defining a convex polyhedron and the extreme points of the polyhedron.
This is then followed by an existence theorem (for extreme points) and a
representation theorem which states that every convex polytope is the convex

hull of its set of extreme points and conversely.

The definition of a recession direction and a recession cone appears
next. It is then shown that, under certain conditions, a recession direction
for a convex polyhedron is also an extreme direction. After examining a set
of unboundedness criteria for convex polyhedra, the discussion turns to the

development of an existence theorem for extreme directions.

At this point we are now able to offer a combined extreme point and
extreme direction representation theorem for polyhedral convex sets. This is
followed by an analysis of the resolution or decomposition of convex poly-
hedra. In particular, after stating a finite basis theorem for polyhedra, it is
demonstrated that every polyhedral convex set is resolvable into the sum of a
bounded convex polyhedron (or polytope) and a polyhedral convex cone.

This is then followed by a finite bases theorem for polytopes.

The next section appearing in chapter 8 involves the separation of
convex polyhedra. Here we extend some of the fundamental separation
results for convex sets developed in chapter 3 to the case where at least one of

the sets being separated is a convex polyhedron.

In chapter 9 we develop the notion of a k-dimensional simplex along
with the definition of a standard n-simplex and unit simplex. Simplicial
faces, facets, and carrier faces are next introduced along with concepts such
as a simplicial complex and a simplicial decomposition (triangulation). Ad-

ditional definitions such as a subdivision, and in particular the barycentric



subdivision of a simplex, a simplicial mapping, and an (integer) labeling
function set the stage for the development of Sperner’s lemma, the Knaster-
Kuratowski - Mazurkiewicz (K-K-M) theorem, Brouwer’s (fixed point) theor-
em (along with a modification by Schauder), and Kakutani’s (fixed point)
theorem. Specifically, Sperner’s lemma informs us that a properly labeled
simplex contains an odd number of completely labeled subsimplexes. the K-
K-M theorem provides us with a set of conditions which guarantee that the
intersection of a collection of closed sets on a simplex is nonempty. And
Brouwer’s theorem demonstrates that a continuous point-to-point mapping of
a simplex into itself admits at least one fixed point, i.e., a point which is
transformed into itself under the mapping. It is further shown that these
three theorems are mathematically equivalent. Finally, Kakatani’s theorem,
which is a generalization of Brouwer’s theorem to multivalued functions,
states that an upper hemicontinuous point-to-set mapping of a compact

convex set into itself has a fixed point.

0.2. A Note on the Method of Mathematical Induction

Quite often in mathematical analysis there are theorems which can
be formulated in terms of “n” in that they assert a certain equation or
proposition holds where n is any positive integer. For theorems such as
these, an appropriate method of proof is mathematical induction. This
procedure consists of the following two steps:

(1) Verify that the theorem/proposition holds for n = 1 (usually);
(2) Assume that the theorem/proposition holds for n = p (the induction

hypothesis) and then prove that it holds for n = p+1.

Clearly the process of mathematical induction involves a type of
“domino effect,” i.e. once the proposition is proved for a particular integer,
then the proposition will automatically follow for the next integer, and the

next one, and the next, and so on ad infinitum. Given that steps 1, 2 have



been executed, the “chain reaction” inherent in the process is set in motion

and subsequently applies for any n > 0.

Suppose steps 1, 2 have been carried out for some theorem which is
to be proved. How can we be sure that this procedure actually proves the
theorem? To answer this let us assume, to the contrary, that the theorem
under consideration is false. In this instance there exist positive integers for
which the theorem is false and thus there must be some smallest integer, say
M +1, for which the theorem is false. Since Step 1 precludes the integer
M +1 from equaling 1, there is an integer M preceding M + 1 and, for
n = M, the theorem is true. Then under step 2, the theorem follows for
n = M+1 and thus a contradiction occurs. But then this means that the
assumption “the theorem is false” was incorrect and thus the theorem must

be true.

0.3. Vector Notation

In the material which follows we shall deal with n-dimensional vector
spaces taken over a field R of real scalars. Since the elements in R are
“ordered,” concepts such as “positive, semipositive, or nonnegative” can be
defined. Specifically, the relations “>, >, and g” constitute a partial

ordering on the vectors in R", i.e., for

- -
Xy

X,

_ n _ n o _
x=| =~ |eR® or x=(z;)eR", i=1,...,n,

Xn

L

(1) x is a strictly positive vector (written x > 0) if z; > 0 for all ¢;
(2) xis a nonnegative vector (denoted x > 0) if z; > 0 for all 7, and
(3) xis a semipositive vector (written x > 0) if x > 0 but x # 0, i.e.,

x has at least one positive component.



Moreover, for vectors x;, X, € R", we may write x; > x,, x; > Xy, or
x; > x, according to whether x; —x, is strictly positive, nonnegative, or

semipositive.
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