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PREFACE

How do you eat an elephant? One bite at a time.

Beverly Johnson, after climbing the rock face of
El Capitan, Yosemite National Park

Neural networks, which were relatively unknown to the educated public
until the early 1980’s, have recently catapulted into a major place in the
consciousness of the scientific and technical community. There are at least two
reasons for the sudden growth of interest in this field. One reason is the rapid
progress both of neural network theory itself and of experimental neurobiology.
Another reason is the increasing complexity of technical problems encountered
in various industrial applications of knowledge-based computers, combined with
some inadequacies found in traditional artificial intelligence approaches.

Yet after more than forty years of research, neural networks are still
surrounded by mythology. Are these networks clever computers that can
perform cognitive tasks with greater flexibility than expert systems? Or are
they models of actual human or animal brains? Or are they abstract physical
systems with certain interconnections, laws, and state transitions? In reality, all
of these descriptions are partially valid but incomplete. The field of neural
networks is now being investigated by researchers from as wide a range of
disciplines as any field in the recent history of knowledge. These researchers
include, in no particular order, biologists, psychologists, cognitive scientists,
computer scientists, mathematicians, engineers, physicists, and even, at an early
stage, a few social scientists and philosophers.

This book concentrates more on the theory of neural networks than on the
applications. Some good reviews of neural network applications are found in
Hecht-Nielsen (1986, 1988, 1990), Lippmann (1987), the DARPA study (1988),
and Miller, Walker, and Ryan (1989). Theoretical principles, and their
implementation in widely known models, are discussed here in a manner
intended to be useful to a broad class of students, designers, and researchers.
Neuroscientists can use these principles to move toward a stronger theoretical
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foundation for brain science, including clinical neurology and psychiatry, and
suggest further experiments. Modelers can use these principles to help provide
a rational basis for building networks. Computer scientists and engineers can
use them for inspiration in building devices. Mathematicians and physicists can
find interesting theoretical problems in dynamical systems derived from neural
or cognitive models. Psychologists and cognitive scientists can achieve more
coherence in their understanding of interrelationships among cognitive
phenomena. Social scientists can gain a better understanding of human decision
processes, which should ultimately yield predictions relevant to their own
disciplines (for a discussion, see Leven, 1988). Finally, philosophers can find
insights into age-old epistemological issues, thereby adding scientific yet
non-reductionistic bases to existing qualitative theories of the mind (see, e.g.,
Maslow, 1968, 1972; Powers, 1973; Turner, 1981).

This book is aimed toward the varied audience of the neural network field,
and is intended as a textbook for a graduate or advanced undergraduate course
in the area. The focus will be on the common interest that all these researchers
share, namely, the relationship between neural structure and cognitive function.
The cognitive functions to be discussed include learning, perception, attention,
memory, pattern recognition, categorization, and motor control, for examples.
The neural structures will at times incorporate organizing principles such as
competition, association, and opponent processing, principles which can be
suggested either by the exigencies of modeling psychological data or by the
description of known neuroanatomical structures. These principles will be
developed in early chapters and will appear throughout the book.

In keeping with the goal of accessibility to a varied audience, technical
prerequisites in any one discipline are kept to a minimum. Recent advances in
computing make the field accessible to many more people than before. Hence,
for students, access to either a personal or mainframe computer is assumed. For
those needing additional background in neurobiology or in mathematics,
appendices in those fields are included; the appendices also list sources for
more detailed coverage.

A word should be said here about equations. The last section of each
chapter includes differential or difference equations for some of the networks
discussed in that chapter, so that the reader can gain hands-on experience in
computer simulation of the networks. On first reading, the student without
mathematical background can skip these equations and follow the development
of networks by means of the figures. On second reading, the same student can
turn to Appendix 2 for explanations of how equations- reflect the qualitative
relationships in networks, and simple algorithms for simulating such equations.
All but the last two sections of Appendix 2 are written so as not to require
previous background in differential equations; notions needed from elementary
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calculus are redefined and motivated in the context of neural network
applications.

All chapters except the first and last contain both thought experimgnts and
computer simulation exercises pertaining to various neural network models.
The exercises herein are a small sampling of the possible questions that can be
asked about the material discussed in the book, and the instructor is encouraged
to supplement them as he or she sees fit. Many of the questions asked here do
not have right and wrong answers, only a variety of better and worse answers.
The reader should approach the field with at least as much intellectual
flexibility and curiosity as possessed by the systems we model.

The following diagram illustrates how the understanding of each chapter
depends on previous chapters:

I ——]

3]
5] 6]

After the introduction in Chapter 1 and the historical account in Chapter 2,
Chapters 3 through 7 reflect a hierarchy from simpler to more complex neural
and cognitive processes. Chapters 3 and 4 discuss various neural network rules
for associative learning and for competition, respectively. Small networks
incorporating some of these rules are then embedded in larger networks that
model complex cognitive processes such as conditioning and attention (Chapter
5) and coding and categorization (Chapter 6). Chapter 7, building on earlier
chapters, concludes this hierarchy with networks designed to deal with problems
that are still largely open (such as optimization, control, decision making, and
knowledge representation). Finally, Chapter 8 gives a brief survey of recent
advances in both neurobiology and artificial neural systems.

The study of mind is a densely interconnected subject. Hence, the
organization of topics in this book is not the only possible one, and the
boundaries between classifications that I use are far from rigid. But if sense is
to be made of the multiplicity of cognitive processes, and models of these
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processes, it seems natural to try to isolate important sub-processes and thereby
proceed from simpler to more complex cognitive functions.

I shall close by acknowledging and thanking the many people who helped
make possible the undertaking of writing this book. The Editors from
Lawrence Erlbaum Associates (LEA) at different stages, Julia Hough and Judi
Amsel, both gave the book project enthusiastic support, and were tireless in
working to smooth out administrative details. Major assistance was also
provided by other members of the staff at LEA, in particular Lawrence
Erlbaum, the company President; Joseph Petrowski, from the Publicity
Department; and Arthur Lizza, from Production.

Wesley Elsberry provided months of technical assistance which allowed for
delivery of camera-ready copy, expediting the book’s production considerably.
His expertise, and good humor, with computer software covered word
processing, graphics, and the running of homework exercises. The text was
done in WordPerfect 5.1 and the graphics in CorelDraw 1.21. The computer
and printer on which the final copy was made are located at the Automation
and Robotics Research Institute (ARRI) at the University of Texas at
Arlington. Charles Lindahl, William Ford, and other staff members at ARRI
provided generous assistance with their facilities. Raju Bapi, Nilendu Jani, and
Carey Weathers also helped with graphics and with testing of homework
exercises.

Several of my colleagues and former students made suggestions on earlier
drafts of the book. Gregory Stone and Richard Golden reviewed the entire
manuscript carefully and helped to shape the revisions. Others contributing
valuable comments on sections of the manuscript included Manuel Aparicio,
Raju Bapi, Daniel Bullock, Heather Cate, David Hestenes, Peter Killeen,
Samuel Leven, Wing-Kwong Mak, Ennio Mingolla, Haluk Ogmen, David
Olson, Alice O’Toole, Paul Prueitt, and David Stork. Their comments
considerably improved the book’s style and brought to it a variety of
professional perspectives.

Finally, my wife, Lorraine Levine, lived patiently with the highs and the
rebound lows associated with the book’s composition. She combined an
appreciation of the project’s value with a warm sense of humor that kept me on
course but helped me avoid the perils of overly grim determination.

Daniel S. Levine
Arlington, Texas
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Some Technical Conventions Used in This Book

In figures, the following symbols are used for connections between
nodes:

Filled semicircle for a modifiable connection;
Filled arrow for a non-modifiable connection;
"+" for an excitatory connection;
"-" for an inhibitory connection.

In equations, I have attempted to make the terminology as uniform as
possible across different authors. Hence, node activities are generally denoted
by "x" and "y," with subscripts, and connection weights by "w," with subscripts,
regardless of what letters were used by the equation’s originator. A few
judicious violations of these conventions are explained in footnotes. Positive
constants defined as system parameters are usually represented by other small
Roman letters.

In exercises, I have not included answers in the back of the book. This
is because most of the exercises are either thought experiments with no definite
right or wrong answer (e.g., "can the model of Anderson, 1968, be extended to
a model of selective attention?") or computer simulations where the object is
to come as close as possible to reproducing results that are described either in
the text or the original source. In some cases, I have included expected results
in the problem statement itself. More detail about the exercises will be
contained in an accompanying instructor’s manual. As for the symbols at the
left margin of exercises, a single star (*) means that the problem involves a
relatively difficult computer simulation. A double star (**) means that the
problem requires a higher degree of mathematical knowledge than others. An
open circle (©) means that the problem is an open-ended thought experiment or
modeling exercise. '
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1

Brain and
Machine:
The Same

Principles?

My mind to me a kingdom is,

Such perfect joy therein I find

As far exceeds all earthly bliss
That God or nature hath assigned.

Edward Dyer

What is mind? No matter. What is matter? Never mind.

Thomas Hewitt Key (epigram in Punch)

What Are Neural Networks?

The late 1980’s and early 1990’s are seeing what may be the start of a
major intellectual revolution. The rapid development of neurobiology and of
experimental psychology has led us closer to an understanding of biological
cognitive functioning than most of us had thought possible a short time ago.
At the same time, the expansion of cognitive or adaptive capabilities in
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industrial applications of computers has proceeded even more rapidly. As the
two fields of neurobiology and artificial intelligence develop further, it is
natural to look for common organizing principles to both.

The belief that there are common quantitative foundations for both brain
science and artificial intelligence has come and gone and come again. In the
1940’s and 1950’s, the notion that neurons are digital "on-off" switches (either
firing or not firing), and thus that brains and the newly emerging digital
computers had similar structural organizations, captured the imagination of
scientists. Eventually, biologists discovered that the digital metaphor was an
inadequate one for capturing what was known -about neurobiology and
psychology. It was found necessary to understand the graded (or analog, or
gray scale) as well as the all-or-none (or digital) components of neuron
responses (see, e.g., Thompson, 1967, Ch, 1). Concurrently, artificial
intelligence moved in the direction of writing digital computer programs to
perform narrowly specified cognitive tasks without much reference to how those
same tasks are performed by humans or animals (see, e.g., Newell & Simon,
1972; Winston, 1977).

Recent years have seen a partial reunification of the two fields of
neurobiological modeling and artificial intelligence. Designers of machines for
performing cognitive functions have taken a renewed interest in learning how
the brain performs those functions. Consequently, such machines have been
built like simulated brain regions, with nodes corresponding to neurons or
neuron populations, and connections between the nodes; at times, their
designers have borrowed ideas from recent experimental results on the brain’s
analog responses. This development is often called connectionism (e.g.,
Feldman & Ballard, 1982; Rumelhart & McClelland, 1986; articles in Volume
9 of Cognitive Science); the industrial applications of connectionist theory are
often called artificial neural systems (e.g., Hecht-Nielsen, 1986). Both of these
terms are of recent coinage; the much older term neural networks is usually
considered to encompass both theoretical and applied models. These models
may or may not be designed as theories of actual brain organization, but always
include nodes' and connections. The DARPA study (1988) gives a reasonable
definition of the term:

! The functional units in neural networks have alternatively been called “nodes,"
"units,” "cells," and "populations." I prefer the first two terms because they do not
commit the user to an assumption that units correspond to either single or multiple
neurons. This book most often uses the term "node," but sometimes uses "unit” since that
usage has been popularized by Rumelhart and McClelland (1986). In Section 2.1, the
word "cells" or "neurons” is used for units in the network of McCulloch and Pitts (1943),
for reasons explained in that section.
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a neural network is a system composed of many simple processing
elements operating in parallel whose function is determined by
network structure, connection strengths, and the processing
performed at computing elements or nodes. ... Neural network
architectures are inspired by the architecture of biological nervous
systems, which use many simple processing elements operating in
parallel to obtain high computation rates (p. 60).

Many factors have contributed to the recent renaissance of neural
networks. First, in applied areas such as knowledge processing, robotic control,
pattern classification, speech synthesis and recognition, and machine vision,
computer engineers have encountered problems not easily amenable to the
symbolic processing programs of mainstream artificial intelligence (for
examples, see Hewitt, 1986; Minsky, 1986; Winograd & Flores, 1987). Second,
neurobiological experimental methods and data analysis have advanced greatly.
Techniques such as recording with electrodes from up to fifty neurons at once
and taking tomographic scans of the entire brain have made neurophysiology
more amenable to quantification. At the same time, advances in computing
(running the gamut from personal computers to supercomputers) have made
simulation of biological data easier and more practical. Third, a few
publications, such as the article of Hopfield (1982) and the two-volume book
edited by Rumelhart and McClelland (1986), have brought neural networks to
the attention of mainstream scientists in such disciplines as physics and
computer science.

The rapid surge in popularity of the neural network field conceals the
- field’s maturity. The history of neural network models, which was summarized
(up to 1983) in the review article of Levine (1983b) and is discussed further in
Chapter 2, shows that most modern ideas in network design have much earlier
antecedents. For example, the current distinction between input, hidden, and
output units (Rumelhart & McClelland, 1986) owes much to the early work of
Rosenblatt (1962) on networks with sensory, associative, and response units
(though modern networks go far beyond Rosenblatt’s perceptrons). Rosenblatt,
in turn, combined extensions of the linear threshold law due to McCulloch and
Pitts (1943) with extensions of the learning law due to Hebb (1949). Moreover,
several current leaders in neural network research, such as Shun-ichi Amari,
James Anderson, Walter Freeman, Stephen Grossberg, and Teuvo Kohonen,
have been publishing in the field since the late 1960’s or early 1970’s. Many
ideas that these investigators laid out in their early work remain fruitful today.



