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Preface

There are two fundamental types of models which are studied in
algebraic linguistics: generative and analytic. Simplifying, we might say
that within the framework of a generative model, the starting point is
a certain grammar, while the object we study is the language generated
by this grammar. An analytic model ‘presents an inverse situation; here
the starting point is a certain language, i.e., a certain collection of sen-
tences, whereas the purpose of the study is to establish the structure of
these sentences, their constitutive elements, and the relations among
them within the framework of sentences. '

As shown by the title, the present book is devoted to analytic models.
These models cover to a great extent the area of descriptive linguistics
and therefore present a great interest for linguists. ‘

Special attention has been given to the axiomatic-deductive structure
of analytic models. At the same time we have tried to explain the linguistic
origin of the notions, the linguistic meaning of the theorems and the
manner in which the models studied are used to investigate natural
languages.

Most of the examples belonging to natural languages have a hypothetical
and explanatory character; here we must take into account that the model
is only an approximation of the reality. Hence there exists a certain lack
of fit between a phenomenon and its model.

In view of the close connection between analytic and generative models
and of the fact that some models have a mixed, generative-analytic
character, we have also discussed some questions currently considered
as belonging to generative models. An example of this sort is the calculus
of syntactic types, discussed in the second part of Chapter I11. We have
also given those notions and results concerning generative models which
permit us to understand the links between the two types of models; these
links are pointed out in various paragraphs of the book.

The book is primarily directed to those m&thematicians who desire
to become acquainted with the mathematical aspects of linguistic struc-
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viii Preface

tures and to those linguists who wish to know (and to use) one of the most
powerful tools for investigating the structure of language: mathematical
modeling. The book can also be useful to all those who are interested in
the problems of linguistic information processing (automatic translation,
informational languages, programming languages, etc.). Thus, the notion
of configuration, dealt with in Chapter V, has already been used in con-
struction of some algorithms of automatic translation (see the correspond-
ing references in Chapter V).

In view of the rapid progress of algebraic linguistics, we made a
definite effort to take into account the most recent contributions in this
field. Of course, we have not presented all analytic models existing in
literature. We hope that the selection we have made enables us to confer
on the book a certain unity of conception and treatment.

A good portion of the book relies on some of the author’s papers, as
specified in the references placed at the end of each chapter. On the other
hand, the book contains many results published here for the first time
(especially in Chapters 11, II1, IV, and V).

We are very indebted to Professors Miron Nicolescu, Grigore Moisil,
and Alexandru Rosetti for their support and encouragement in pursuing
the research in the field of mathematical linguistics.

In writing this book we have been stimulated by the proposal made to
us by Richard Bellman in June 1964 to publish in his famous series
*‘Mathematics in Science and Engineering” an English version of our
previous book ‘Lingvistica matematica” (Editura didactica sj pedagogica,
Bucuresti, 1963). We thought it more appropriate to write an entirely new
book, which would reflect the general status of analytic models and our
own most recent views. We are deeply grateful to Richard Bellman for
the opportunity to publish this book.

Bucharest SoLoMON MARcUS
November, 1966
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Chapter 1

Languages and Partitions

1. Languages and Grammars

Let I' be a finite set called the vocabulary. The elements of I are words.
Consider the free semigroup T generated by I', namely, the set of all
finite strings of words endowed with an associative and noncommutative
binary operation of concatenation. Since we are considering only finite
strings, we shall say strings instead of finite strings. A string of words will
also be called a string over I'. The zero string, denoted by 6, is a string
such that #x = x8 = x for each string x. Without contrary assumption, 6
does not belong to I'.

A subset ® of T is a language over I'. The semigroup T is the total or
the universal language over T'.

A generative grammar of ® is a finite set of rules (called grammatical
rules) specifying all strings of ® (and only these strings) and assigning to
each string of ® a structural description that specifies the elements of
which the string is constructed, their order, arrangement, interrelations,
and whatever other grammatical information is needed to determine how
the string is used and understood. ([5], p. 285). It is to be noted that
in such a grammar the structural description is made with the aid of
grammatical rules.

Such a point of view is closely related to the theory of formal systems
and to other fundamental chapters of contemporary mathematical logic
(such as Turing machines and recursive functions). But we shall consider
in this book a quite different point of view: that of an analytic grammar.

An analytic grammar of ® considers ® given, and its purpose is to
obtain an intrinsic description of the strings belonging to @, that is, a
description of the relations between the words and between the substrings
with respect to their position in the strings of ®. Such a point of view is
very closely related to the traditional structural linguistic theory, especially

1



2 I. Languages and Partitions

to the so-called descriptive linguistics developed by Bloomfield [2, 3],
Harris [13], Hockett [15], Wells [38], and others.

To provide a clearer distinction between a generative grammar and an
analytic grammar, let us consider the following example. It is known that
a finite-state language may be generated in several ways. If an ambiguous
grammar is used, we may detect the so-called constructional homonymy
that arises when a sentence has several representing sequences, that is,
-several different ‘‘constructions” ([1], pp. 93-94). Note, for instance, the
ambiguous English sentence: They are flying planes, which is really two
different sentences: (1) They (are (flying planes)) and (2) They ((are
flying) planes). The grammatical structures, or the meanings of these two
sentences are different ([5], p. 274); an ambiguous finite-state grammar or
a nondeterministic finite automaton may detect this difference ([1],
pp.- 93-94). Such a situation is the basic concern of generative grammar.

Let us now consider another situation. We shall say that two strings
x and y are ® equivalent if, for each pair of strings u, v, we have either
uxv € ®, uyv € @, or uxv € T—®, uyv € T— . A fundamental result
of Rabin and 'Scott ([29], Theorem 1) and a theorem of Bar-Hillel and
Shamir [1] impiy that ® is a finite-state language if and only if there are
'only finitely many ®-equivalence classes. Such a characterization of the
finite-state languages, which involves only the intrinsic structure of these
languages, is at the basis of an analytic grammar.

The above example shows not only the difference, but also the close
connection between the two types of grammars. Each completes the
description given by the other.

The utility of an analytic study of the languages follows also from
another fact. Since I is finite, the universal language T is denumerable,
and, consequently, the set of all languages over I is not denumerable. On
the other hand, as is noted in [4], the set of all generative grammars over
I' (more precisely, the set of all constituent-structure grammars over I)
‘is denumerable. Therefore, -there exists a nondenumerable set .# of
languages over I', such that, for L € .#, there is no generative grammar
of L. For such languages, the analytic study of their structure is the only
method of grammatical investigation. An analytic study is applicable to
every language.

2. Enriching the Structure of a Language

There are many problems concerning a 1anguage & which can be suc-
cessfully studied without enriching the structure of @, that is, by knowing



2. Enriching the Structure of a Language 3

only that @ is a detérmined subset of the free semigroup generated by I'
and being able to say, for each string over I', whether it belongs to ®. An
example of such a problem is that of morphologic homonymy. We shall
say that the morphologic homonymy of the word x is not greater than the
morphologic homonymy of the word y, if for each pair of strings # and
v such that ux»y € ®, we have uyv € ®. Moreover, if the converse is
not true, that is, if there are two strings # and v such that uyv € ® but
uxv € T—®, we shall say that the morphologic homonymy of x is less
than the morphologic homonymy of y. Thus, if I' is the French vocabulary
and @ is the set of all well-formed French sentences, the morphologic
homonymy of beau is less than the morphologic homonymy of mince.
Indeed, in each well-formed sentence containing the word beau the re-
placement of beau by mince also gives a well-formed sentence; but there
exists a well-formed sentence containing the word mince, such that the
replacement of mince by beau gives no well-formed sentence (compare
je posséde une feuille mince and je possede une feuille beau). A systematic
development of this idea—which originates with Dobrusin [7, 8] and
Sestier [34]—was given in [21-23]. For further developments, see
[6,24,31,32].

Another problem which may be studied without enriching the basic
structure of the language is that of the morphemic segmentation. If
I' is the set of phonemes of a natural language and ® is the set of all
well-formed sequences of phonemes in this language, then, by counting
the possible successors of each initial segment, one can obtain the
morphemic boundaries in the considered sequence. Such a procedure
was discovered by Harris [12].

We have discussed so-far two problems of a pure distributional and
syntagmatic character. Other such problems are considered in [24].
But there are many problems which also involve a paradigmatic structure
of the considered language, that is, a partition of I'. Such problems will
be considered in Chapters I through IV. The customary linguistic inter-
pretation of the partition of I' is the decomposition of the set of words
in paradigms, the paradigm of a word being the set of its flectional forms.
For instance, the paradigm of book is {hook, books} and the paradigm
of great is {great, greater, greatest}. In fact, the paradigms do not form
a partition of I', since there exist distinct paradigms which are not dis-
joint. Such nonconcordances are unavoidable in all modeling processes.

A triple {I", P, ®}, where I is a finite vocabulary, P is a partition of
I', and ® is a subset of the free semigroup generated by I' will be called
a language with paradigmatic structure. Since we are considering



4 1. Languages and Partitions

especially such languages;, we shall say, briefly, that {I', P, ®} is a
language. K

The linguistic analysis needed in machine translation requires a richer
structure of the considered languages. Here, a language must be con-
sidered a system {I', P, ®, K, ¢}, where I', P and ® are the objects
already defined, K is a class of subsets of I" called grammatical categories
(such as the set of words in nominative or the set of words in the past
tense), and ¢ is a function which associates to each word x the intersection
of all grammatical categories containing x. For a further discussion of
this point of view, see [33], pp. 42-43.

3. The Notion of Natural Language

The notion of a language over the vocabulary I' includes both natural
languages and the artificial languages of logic and of computer-programing
theory. The notion of a natural language is much more complicated, since
its structure is very rich. Kalméar has proposed a definition of the concept
of language, especially concerning the natural languages, which was
intended to cover all parts of linguistics [16]. He defines a language as
an ll-tuple {P,R,F,W,C,A,S,My, My, Ay, Ag}, with the symbols
as follows:

P is an arbitrary set called the set of protosemata (in the case of a
spoken language the set of physical sounds used as representatives of
phonemes; in the case of a written language the set of geometrical figures
used as representatives of letters).

R is an equivalence relation defined on the set of occurrences of the
protosemata in the strings of the free semigroup generated by P. The
classes of R equivalence are called semata (phonemes or graphemes,
respectively).

F is a subset of the free semigroup generated by the set of semata
(the elements of F are called word forms).

W is a subset of the power set of F, that is, a set the elements of which
are subsets of F, or a decomposition of the set F into not necessarily
disjoint subsets. (The elements of W, or the subsets of F into which it
has been decomposed, are called words, every word being identified with
the set of all its forms).



3. The Notion of Natural Language S

C is a partition of the set W into subsets called word classes or parts
of discourse.

A is an application of the set C onto some set the elements of which
are sets of functions such that if ¢ € C (that is, if ¢ is a word class) and
G is the image of ¢ under application 4, then G is a set of functions f
defined for all elements w of ¢ (that is, for all words w belonging to the
word class ¢) and for each such w, we have f(w) € w [that is, f(w) is
one of the forms of w]. For example, if ¢ is the class of all nouns (suppose
this to be a word class), the elements of the corresponding G are the
functions ‘‘the nominative of...,” “the accusative of...,” etc.; if c is
the class of all verbs (supposed to be a word class), the elements of the
corresponding G are the functions ‘“‘the indicative present tense singular
second person of . . . ,”’ etc. A4 is called the morphologic application.

S is a subset of the free semigroup generated by the set F. The elements
of S are called grammatically correct sentences.

My, is a set called the set of word meanings.

M is a set called the set of sentence meanings.

Aw is an application of the set W into the power set of My,. For any
word w € W, we call the elements of the set onto which w is mapped by
Ay, the (possible) meanings of w.

As is an application of the set § into the power set of Mg. For any
sentence s € §, we call the elements of the set onto which s is mapped
by Ag, the (possible) meanings of s.

Tentatively, we can regard the sets My, and M as arbitrary abstract
sets; however, to have a better model of natural languages, we suppose
them to be sets having some logical structures still to be determined.
Approximately, My, corresponds to the set of concepts and My to the set
of propositions in the sense of traditional logic. The sets M, and M are
common for different naturall languages, which makes translation from one
to the other possible.

A theory based on this definition needs some structure axioms (the
term “‘structure’” being used in a sense similar to that of an algebraic
structure). In such a theory, phonology, morphology, syntax, and seman-
tics will appear as subtheories similar to those of the additive group of a
ring in relation to ring theory. Thus, P, R, and F define the phonetics,
the graphematics, and the phonology: W, C, and A define the morphology:;
S defines the syntax; M, Mg, Ay, and A5 define the semantics. In such
a theory, a generative grammar may show how to generate the set F
of word forms or the set § of grammatically correct sentences.

- The customary nonconcordance between a phenomenon and its
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logical model appears also in the above construction. So, in a, natural
language the parts of discourse are not disjoint, and the passage from
physical sounds to phonemes is not simple enough to describe by an
equivalence relation. See, in this respect, [17, 27, 28, 36].

The sets My, and Mg are ambiguous, for we do not have a clear criterion
for deciding when two word meanings or two sentence meanings can be
regarded as identical. The definition of identity has to be the main part
of the determination of the logical structure of the sets My and Mj.
For the delicate questions of semantics and the possibility of using the
methods of generative grammars here, see [18, 28, 39]. We also note
the absence, in the above construction, of such a fundamental linguistic
notion as morpheme. Finally, let us remark that, according to some recent
papers [14, 33], the notion of grammatical correctness, attached to the
set §, may be reduced to simpler notions.

By postulating appropriate axioms, the above model can probably be
improved, so as to become more adequate to the nonbanal aspects of
natural languages.

4. Distribution

Let us first consider the most simple notion of a language, given as a
pair {I', ®}. The strings which belong to ® are called marked strings.
In many linguistic problems we are concerning with various partitions of
I, that is, decompositions of I' into nonvoid mutually disjoint sets.

The most important partition of I' which arises in linguistics is the so-
called partition in distributional classes, defined as follows. Two words
a and b will be considered in the same distributional class if for each
pair of strings x, y, the relation xay € ® implies xby € ®, whereas the
relation xby € ® implies xay € P.

The notion of distributional class becomes more intuitive if we intro-
duce the notion of context. A context over I" will be defined as an ordered
pair of strings over I' and will be denoted by (x, y), where x € T and
y € T. A word a is allowed by the context (x, y) if the string xay belongs
to ®. Denote by .#(a) the set of all contexts with respect to which a is
allowed. It follows immediately that two words a and b belong to the
same distributional class if and only if #(a) = ¥ (b), that is, if and only
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if 2 and b are allowed by the same contexts. This notion has its origin in
descriptive linguistics (see, for instance, [9] and [13]).

If we interpret I' as the English vocabulary and @ as the set of well-
formed English sentences, the words book and chair are in the same
distributional class, whereas book and books are not. If we interpret
[ as the French vocabulary and ® as the set of well-formed French
sentences, the words mince and maigre are in the same distributional
class, whereas grand and mince are not; indeed, the sentence j’ai une
feuille mince is well-formed, whereas j’ai une feuille grand is not. One
of the principal tasks in the study of a language is the establishment
of its distributional classes.

It is easy to see that two different distributional classes are disjoint;
thus these classes define a partition S of T, called the distributional parti-
tion of T'. The first mathematical study of this notion was made in 1958
[19] and will be the point of departure in the following ¢onsiderations.
A distributional class is called, in [19], a family. We shall use these two
denominations as equivalent.

The properties defined exclusively in terms of contexts and of distribu-
tional classes are the simplest and the most elegant in a linguistic descrip-
tion. We may consider the following situations concerning the reciprocal
distribution of two words a and b: (1) #(a) C ¥ (b) (wWhere C means that
the inclusion is strict); in this case we shall say that a and b are in defective
distribution. If T is the French vocabulary and @ is the set of well-formed
French sentences, then a = grand and b = mince are in defective distribu-
tion. (2) £(a) N L(b) # 0, FL(a) — F(b) # 0 # F(b) — F(a); in this case
we shall say that a and b are in equipollent distribution. If T is the English
vocabulary and ® is the set of well-formed English sentences, then a = a
and b = the are in equipollent distribution. (3) #(a) N F(b) = 0; in this
case we shall say that a and b are in complementary distribution.(4) ¥ (a) =
(b); in this case a and b are in identical distribution (that is, they belong
to the same distributional class).

The most frequent type of distribution in a natural language is that of
equipollent distribution. But the three other types are very significant
from the linguistic point of view. Let us consider, for instance, the French
word grand. 1t is an adjective with values singular and masculine. The
words which belong to S(grand) are also singular, masculine adjectives,
but there are singular, masculine adjectives which do not belong to
S(grand); such adjectives are mince, large, maigre, and others. It is pos-
sible to find a formal procedure which detects all adjectives with the
values singular and masculine? The answer is affirmative and involves
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the consideration of defective distribution. Indeed, let us consider all
adjectives a such that grand and a are in defective distribution. Denote
by (grand) the set of these adjectives. The union S(grand) U (grand)
contains all adjectives with the values singular and masculine for two
reasons. First there exists no word a such that a and grand are in defective
distribution; second, grand and a are in defective distribution if and only
if a is a singular, masculine adjective and a & S(grand) since a must have
a greater morphologic homonymy than grand. :

The above considerations may be generalized. Consider, in a natural
language, a word b for which no word a exists such that ¢ and b are in
defective distribution. Then, the union S(b) U (b), (where Z(b)={a; b
and a are in defective distribution}) is exactly the set of words whose set
of values contains those of b.

The complementary distribution is very important in the phonological
descriptions, where two individual sounds which differ only by their
position (such as an initial a and a final @) are in complementary distribu-
tion [17, 36, 37].

5. P-Structures; Derivative of a Partition

. A more complex concept considers a language to be a triple {T, P, ®},
where P is a partition of I' other than into distributional classes. Formally,
we may also admit the possibility that S(x) = P(x) for each x € T, but this
situation is of no linguistic interest.

In a language with paradigmatic structure there are three species of
properties: (1) properties of a purely distributional (syntagmatic) charac-
ter, which involve only the sets I and ® (such properties are, for instance,
those discussed in the preceding section); (2) properties of a purely para-
digmatic character, which involve only the set I' and the partition P.(such
properties appear, for instance, in the description of flectional forms in
Latin, Russian, and other flectional languages; see a model description of
these phenomena in [25] and in Chapter I1I of [24]); (3) properties of a
mixed character, which involve all three components I', P, and ®. We
are concerned in the first five chapters of this book especially with
properties of the third species. Thus we need some preliminary notions
and propositions.

If P is a partition of I, each set of P will be called a cell of P or a P-cell.
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If the partition P is written
r=ye is
i=1

then each P; denotes a cell of P and the number of cells is equal to n.
Since the sets P; are mutually disjoint, each word belongs to a single cell.
We denote by P(a) the cell of P containing the word a. It follows that, for
two distinct words a and b, we have either P(a) =-P(b) or P(a) N P(b) = 0.

As we have remarked, the customary interpretation of the set P(a) in
a natural language is the consideration of P(a) as the set of flectional forms
of the word a. This situation suggests the introduction of the so-called
unit partition of T', in which each cell is formed by a single word. With the
interpretation just adopted for P, a language whose partition P is the unit
partition is a language without morphology; following traditional termin-
ology used in the classification of natural languages, such a language will
be called an amorphic language (for instance, Chinese). This type of
language will be studied in Chapter II.

Another simple partition of I' is the improper partition, which has a
single cell identical to T'.

The starting point of linguistic analysis is the unit partition of I'. Each
process of abstraction involves an equivalence relation which leads to a
partition with fewer cells. This situation makes the following definition
natural. '

Let us consider two partitions P and Q of I'. We shall say that P is finer
than Q if P(a) C Q(a) for eacha €T.

The unit partition is finer than every other partition of I', and each
partition of I is finer than the improper partition. If we interpret P(a) as
the set of all flectional forms of a, partition P seems to be finer than the
partition of I' into the parts of discourse. This idea will be expanded in
Chapter II1.

If x,x, . . . x, is a string over I', the sequence P(x,)P(x,). . .P(x,) is called
the P-structure of the string x,x,...x,. If P, C T for 1 <i=< s and there
exists a string x;x, . . . x; over I', such that P; = P(x;) for 1 <i < s, then the
sequence PP, ... P, is called a P-structure. This P-structure is marked
if the string x,x, . . . x, may be chosen so it belongs to ®. In other words,
the P-structure P.P,...P, is marked if there exists a marked string
XXy . . . Xy such that Py = P(x;) for 1 <i=<s.

The P-structures may be composed by concatenation. This operation
leads to a new P-structure.

Let us consider two P-structures #; = P(x,)P(x,)...P(x,) and £, =
P3,)P(y,). . .P(y,). We shall say that #; and £, are P-equivalent and we



