LNCS 3185

Tutorial

International School on Formal Methods for the Design of
Computer, Communication and Software Systems, SFM-RT 2004
Bertinoro, Italy, September 2004, Revised Lectures

Marco Bernardo Flavio Corradini (Eds.)

Formal Methods
for the Design of
Real-Time Systems

Internat IShl n Formal Methods for the Design of
Comp C ommunication and Software Systems, SFM-RT 2004
Bertin Itly Se ptxnb 13-18, 2004

Re d Lectu res

II/lI/II//IIIIII///II//IIIIII/I

0404333

@ Springer

Volume Editors

Marco Bernardo

Universita di Urbino ”Carlo Bo”, Istituto di Scienze e Tecnologie dell’Informazione
Piazza della Repubblica 13, 61029 Urbino, Italy

E-mail: bernardo@sti.uniurb.it

Flavio Corradini
Universita di L’ Aquila, Dipartimento di Informatica
E-mail: flavio@di.univagq.it

Library of Congress Control Number: 2004111362

CR Subject Classification (1998): D.2, D.3,F.3,C.3, C.2.4

ISSN 0302-9743
ISBN 3-540-23068-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2004
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Olgun Computergrafik
Printed on acid-free paper SPIN: 11315995 06/3142 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

New York University, NY, USA
Doug Tygar

University of California, Berkeley, CA, USA
Mashe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3185

Preface

A large class of computing systems can be specified and verified by abstracting
away from the temporal aspects of their behavior. In real-time systems, instead,
time issues become essential. Their correctness depends not only on which ac-
tions they can perform, but also on the action execution time. Due to their
importance and design challenges, real-time systems have attracted the atten-
tion of a considerable number of computer scientists and engineers from various
research areas.

This volume collects a set of papers accompanying the lectures of the fourth
edition of the International School on Formal Methods for the Design of Com-
puter, Communication and Software Systems (SFM). The school addressed the
use of formal methods in computer science as a prominent approach to the rig-
orous design of computer, communication and software systems. The main aim
of the SFM series is to offer a good spectrum of current research in foundations
as well as applications of formal methods, which can be of help for graduate
students and young researchers who intend to approach the field.

SFM-04:RT was devoted to real-time systems. It covered formal models and
languages for the specification, modeling, analysis, and verification of these time-
critical systems, the expressiveness of such models and languages, as well as
supporting tools and related applications in different domains.

The opening paper by Rajeev Alur and Parthasarathy Madhusudan pro-
vides a survey of the theoretical results concerning decision problems of reach-
ability, language inclusion, and language equivalence for timed automata. The
survey is concluded with a discussion of some open problems. Elmar Bihler and
Walter Vogler’s paper presents timed extensions of Petri nets with continuous
and discrete time and a natural testing-based faster-than relation for comparing
asynchronous systems. Several applications of the theory are also presented.
Jos C.M. Baeten and Michel A. Reniers present the theory and application
of classical process algebras extended with different notions of time and time
passing and compare their expressiveness via embeddings and conservative ex-
tensions. The PAR communication protocol is considered as a case study. The
expressiveness of existing timed process algebras that deal with temporal as-
pects by following very different interpretations is also the main theme of Diletta
R. Cacciagrano and Flavio Corradini’s paper. In addition, they compare the ex-
pressiveness of urgent, lazy and maximal progress tests. Mario Bravetti presents
a theory of probabilistic timed systems where durations are expressed by gen-
erally distributed random variables. The theory supports the specification of
both real-time and stochastic time during the design and analysis of concurrent
systems. Bran Selic, instead, provides an overview of the foundations of the run-
time semantics underlying the Unified Modeling Language (UML) as defined in
revision 2.0 of the official OMG standard.

VI Preface

After these contributions on formal timed models, timed languages and their
expressiveness, the volume includes the description of three significant tools sup-
porting the specification, modeling, analysis and verification of real-time systems.
Gerd Behrmann, Alexandre David and Kim G. Larsen’s tutorial paper on the
tool Uppaal provides an introduction to the implementation of timed automata
in the tool, the user interface, and the usage of the tool. Reference examples and
modeling patterns are also presented. Marius Bozga, Susanne Graf, Ileana Ober,
Iulian Ober, and Joseph Sifak present an overview on the IF toolset, which
is an environment for the modeling and validation of heterogeneous real-time
systems. The toolset is built upon a rich formalism, the IF notation, allow-
ing structured automata-based system representations. A case study concerning
the Ariane-5 Flight Program is presented. Finally, Joost-Pieter Katoen, Henrik
Bohnenkamp, Ric Klaren, and Holger Hermanns survey the language Modest,
a modeling and description language for stochastic and timed systems, and its
accompanying tool environment MOTOR. The modeling and analysis with this
tool of a device-absence-detecting protocol in plug-and-play networks is reported
in the paper.

We believe that this book offers a quite comprehensive view of what has
been done and what is going on worldwide at present in the field of real-time
models and languages for the specification, analysis, and verification of time-
critical systems. We wish to thank all the lecturers and all the participants for a
lively and fruitful school. We also wish to thank the whole staff of the University
Residential Center of Bertinoro (Italy) for the organizational and administrative
support, as well as the sponsors of the school — AICA and ONRG - for making
it possible through the provision of grants to some of the participants.

September 2004 Marco Bernardo and Flavio Corradini

Lecture Notes in Computer Science

For information about Vols. 1-3103

please contact your bookseller or Springer

Vol. 3232: R. Heery, L. Lyon (Eds.), Research and Ad-
vanced Technology for Digital Libraries. XV, 528 pages.
2004.

Vol. 3223: K. Slind, A. Bunker, G. Gopalakrishnan (Eds.),
Theorem Proving in Higher Order Logic. VIII, 337 pages.
2004.

Vol. 3221: S. Albers, T. Radzik (Eds.), Algorithms — ESA
2004. XVIII, 836 pages. 2004.

Vol. 3220: J.C. Lester, R M. Vicari, F. Paraguagu (Eds.),
Intelligent Tutoring Systems. XXI, 920 pages. 2004.

Vol. 3208: H.J. Ohlbach, S. Schaffert (Eds.), Principles
and Practice of Semantic Web Reasoning. VII, 165 pages.
2004.

Vol. 3207: L.T. Jang, M. Guo, G.R. Gao, N.K. Jha, Embed-
ded and Ubiquitous Computing. XX, 1116 pages. 2004,

Vol. 3206: P. Sojka, I. Kopecek, K. Pala (Eds.), Text,
Speech and Dialogue. XIII, 667 pages. 2004. (Subseries
LNAI).

Vol. 3205: N. Davies, E. Mynatt, I. Siio (Eds.), UbiComp
2004: Ubiquitous Computing. XVI, 452 pages. 2004,
Vol. 3203: J. Becker, M. Platzner, S. Vernalde (Eds.), Field
Programmable Logic and Application. XXX, 1198 pages.
2004.

Vol. 3199: H. Schepers (Ed.), Software and Compilers for
Embedded Systems. X, 259 pages. 2004.

Vol. 3198: G.-J. de Vreede, L.A. Guerrero, G. Marin
Raventos (Eds.), Groupware: Design, Implementation and
Use. XI, 378 pages. 2004.

Vol. 3194: R. Camacho, R. King, A. Srinivasan (Eds.), In-
ductive Logic Programming. XI, 361 pages. 2004. (Sub-
series LNAI).

Vol. 3193: P. Samarati, P. Ryan, D. Gollmann, R. Molva
(Eds.), Computer Security — ESORICS 2004. X, 457
pages. 2004.

Vol. 3192: C. Bussler, D. Fensel (Eds.), Artificial Intel-

ligence: Methodology, Systems, and Applications. XIII,
522 pages. 2004. (Subseries LNAI).

Vol. 3189: P.-C. Yew, J. Xue (Eds.), Advances in Computer
Systems Architecture. XVII, 598 pages. 2004.

Vol. 3186: Z. Bellahséne, T. Milo, M. Rys, D. Suciu, R.
Unland (Eds.), Database and XML Technologies. X, 235
pages. 2004.

Vol. 3185: M. Bernardo, F. Corradini (Eds.), Formal Meth-
ods for the Design of Real-Time Systems. VII, 295 pages.
2004.

Vol. 3184: S. Katsikas, J. Lopez, G. Pernul (Eds.), Trust
and Privacy in Digital Business. XI, 299 pages. 2004.

Vol. 3183: R. Traunmiiller (Ed.), Electronic Government.
XIX, 583 pages. 2004.

Vol. 3182: K. Bauknecht, M. Bichler, B. Proll (Eds.), E-
Commerce and Web Technologies. XI, 370 pages. 2004.

Vol. 3181: Y. Kambayashi, M. Mohania, W. WoB (Eds.),
Data Warehousing and Knowledge Discovery. XIV, 412
pages. 2004.

Vol. 3180: F. Galindo, M. Takizawa, R. Traunmiller
(Eds.), Database and Expert Systems Applications. XXI,
972 pages. 2004.

Vol. 3179: FJ. Perales, B.A. Draper (Eds.), Articulated
Motion and Deformable Objects. XI, 270 pages. 2004.

Vol. 3178: W. Jonker, M. Petkovic (Eds.), Secure Data
Management. VIII, 219 pages. 2004.

Vol. 3177: Z.R. Yang, H. Yin, R. Everson (Eds.), Intelli-
gent Data Engineering and Automated Learning — IDEAL
2004. X VIII, 852 pages. 2004.

Vol. 3176: O. Bousquet, U. von Luxburg, G. Ratsch (Eds.),
Advanced Lectures on Machine Learning. VIII, 241 pages.
2004. (Subseries LNAI).

Vol. 3175: C.E. Rasmussen, H.H. Bilthoff, B. Scholkopf,
M.A. Giese (Eds.), Pattern Recognition. XVIII, 581 pages.
2004.

Vol. 3174: F. Yin, J. Wang, C. Guo (Eds.), Advances in
Neural Networks - ISNN 2004. XXXV, 1021 pages. 2004.

Vol. 3172: M. Dorigo, M. Birattari, C. Blum, L.
M.Gambardella, F. Mondada, T. Stiitzle (Eds.), Ant
Colony, Optimization and Swarm Intelligence. XII, 434
pages. 2004.

Vol. 3170: P. Gardner, N. Yoshida (Eds.), CONCUR 2004
- Concurrency Theory. XIII, 529 pages. 2004.

Vol. 3166: M. Rauterberg (Ed.), Entertainment Compuﬁng
—ICEC 2004. XXIII, 617 pages. 2004.

Vol. 3163: S. Marinai, A. Dengel (Eds.), Document Anal-
ysis Systems VI. XII, 564 pages. 2004.

Vol. 3162: R. Downey, M. Fellows, F. Dehne (Eds.), Pa-
rameterized and Exact Computation. X, 293 pages. 2004.

Vol. 3160: S. Brewster, M. Dunlop (Eds.), Mobile Human-
Computer Interaction — MobileHCI 2004. XVIII, 541
pages. 2004.

Vol. 3159: U. Visser, Intelligent Information Integration
for the Semantic Web. XIV, 150 pages. 2004. (Subseries
LNAI).

Vol. 3158: 1. Nikolaidis, M. Barbeau, E. Kranakis (Eds.),
Ad-Hoc, Mobile, and Wireless Networks. IX, 344 pages.
2004.

Vol. 3157: C. Zhang, H. W. Guesgen, W.K. Yeap (Eds.),
PRICAI 2004: Trends in Artificial Intelligence. XX, 1023
pages. 2004. (Subseries LNAI).

Vol. 3156: M. Joye, J.-J. Quisquater (Eds.), Cryptographic
Hardware and Embedded Systems - CHES 2004. XIII, 455
pages. 2004.

Vol. 3155: P. Funk, P.A. Gonzalez Calero (Eds.), Advances
in Case-Based Reasoning. XIII, 822 pages. 2004. (Sub-
series LNAT).

Vol. 3154: R.L. Nord (Ed.), Software Product Lines. XIV,
334 pages. 2004.

Vol. 3153: J. Fiala, V. Koubek, J. Kratochvil (Eds.), Math-
ematical Foundations of Computer Science 2004. XIV,
902 pages. 2004.

Vol. 3152: M. Franklin (Ed.), Advances in Cryptology —
CRYPTO 2004. XI, 579 pages. 2004.

Vol. 3150: G.-Z. Yang, T. Jiang (Eds.), Medical Imaging
and Augmented Reality. XII, 378 pages. 2004.

Vol. 3149: M. Danelutto, M. Vanneschi, D. Laforenza
(Eds.), Euro-Par 2004 Parallel Processing. XXXIV, 1081
pages. 2004.

Vol. 3148: R. Giacobazzi (Ed.), Static Analysis. XI, 393
pages. 2004,

Vol. 3146: P. Erdi, A. Esposito, M. Marinaro, S. Scarpetta
(Eds.), Computational Neuroscience: Cortical Dynamics.
X1, 161 pages. 2004.

Vol. 3144: M. Papatriantafilou, P. Hunel (Eds.), Principles
of Distributed Systems. XI, 246 pages. 2004.

Vol. 3143: W. Liu, Y. Shi, Q. Li (Eds.), Advances in Web-
Based Learning - ICWL 2004. XIV, 459 pages. 2004.

Vol. 3142: J. Diaz, J. Karhumiki, A. Lepisto, D. Sannella
(Eds.), Automata, Languages and Programming. XIX,
1253 pages. 2004.

Vol. 3140: N. Koch, P. Fraternali, M. Wirsing (Eds.), Web
Engineering. XXI, 623 pages. 2004.

Vol. 3139: F. Iida, R. Pfeifer, L. Steels, Y. Kuniyoshi (Eds.),
Embodied Artificial Intelligence. IX, 331 pages. 2004.
(Subseries LNAI).

Vol. 3138: A. Fred, T. Caelli, R.P.W. Duin, A. Campilho,
D.d. Ridder (Eds.), Structural, Syntactic, and Statistical
Pattern Recognition. XXII, 1168 pages. 2004.

Vol. 3137: P. De Bra, W. Nejdl (Eds.), Adaptive Hyperme-
dia and Adaptive Web-Based Systems. XIV, 442 pages.
2004.

Vol. 3136: F. Meziane, E. Métais (Eds.), Natural Language
Processing and Information Systems. XII, 436 pages.
2004.

Vol. 3134: C. Zannier, H. Erdogmus, L. Lindstrom (Eds.),
Extreme Programming and Agile Methods - XP/Agile
Universe 2004. X1V, 233 pages. 2004.

Vol. 3133: A.D. Pimentel, S. Vassiliadis (Eds.), Computer
Systems: Architectures, Modeling, and Simulation. XIII,
562 pages. 2004.

Vol. 3132: B. Demoen, V. Lifschitz (Eds.), Logic Program-
ming. XII, 480 pages. 2004.

Vol. 3131: V. Torra, Y. Narukawa (Eds.), Modeling De-
cisions for Artificial Intelligence. XI, 327 pages. 2004.
(Subseries LNAI).

Vol. 3130: A. Syropoulos, K. Berry, Y. Haralambous, B.
Hughes, S. Peter, J. Plaice (Eds.), TeX, XML, and Digital
Typography. VIII, 265 pages. 2004.

Vol. 3129: Q. Li, G. Wang, L. Feng (Eds.), Advances
in Web-Age Information Management. XVII, 753 pages.
2004,

Vol. 3128: D. Asonov (Ed.), Querying Databases Privately.
IX, 115 pages. 2004.

Vol.3127: K E. Wolff, H.D. Pfeiffer, H.S. Delugach (Eds.),
Conceptual Structures at Work. X1, 403 pages. 2004. (Sub-
series LNAI).

Vol. 3126: P. Dini, P. Lorenz, J.N.d. Souza (Eds.), Service
Assurance with Partial and Intermittent Resources. XI,
312 pages. 2004.

Vol. 3125: D. Kozen (Ed.), Mathematics of Program Con-
struction. X, 401 pages. 2004.

Vol. 3124: JN. de Souza, P. Dini, P. Lorenz (Eds.),
Telecommunications and Networking - ICT 2004. XXVI,
1390 pages. 2004.

Vol. 3123: A. Belz, R. Evans, P. Piwek (Eds.), Natural Lan-
guage Generation. X, 219 pages. 2004. (Subseries LNAI).

Vol. 3122: K. Jansen, S. Khanna, J.D.P. Rolim, D. Ron
(Eds.), Approximation, Randomization, and Combinato-
rial Optimization. IX, 428 pages. 2004.

Vol. 3121: S. Nikoletseas, J.D.P. Rolim (Eds.), Algorith-
mic Aspects of Wireless Sensor Networks. X, 201 pages.
2004.

Vol. 3120: J. Shawe-Taylor, Y. Singer (Eds.), Learning
Theory. X, 648 pages. 2004. (Subseries LNAI).

Vol. 3118: K. Miesenberger, J. Klaus, W. Zagler, D. Burger
(Eds.), Computer Helping People with Special Needs.
XXIII, 1191 pages. 2004.

Vol. 3116: C. Rattray, S. Maharaj, C. Shankland (Eds.), Al-
gebraic Methodology and Software Technology. XI, 569
pages. 2004.

Vol. 3115: P. Enser, Y. Kompatsiaris, N.E. O’Connor, A F.
Smeaton, A.W.M. Smeulders (Eds.), Image and Video Re-
trieval. XVII, 679 pages. 2004.

Vol. 3114: R. Alur, D.A. Peled (Eds.), Computer Aided
Verification. XII, 536 pages. 2004.

Vol. 3113: J. Karhumiki, H. Maurer, G. Paun, G. Rozen-
berg (Eds.), Theory Is Forever. X, 283 pages. 2004.

Vol. 3112: H. Williams, L. MacKinnon (Eds.), Key Tech-
nologies for Data Management. XII, 265 pages. 2004.

Vol. 3111: T. Hagerup, J. Katajainen (Eds.), Algorithm
Theory - SWAT 2004. XI, 506 pages. 2004.

Vol. 3110: A. Juels (Ed.), Financial Cryptography. XI, 281
pages. 2004.

Vol. 3109: S.C. Sahinalp, S. Muthukrishnan, U. Dogrusoz
(Eds.), Combinatorial Pattern Matching. XII, 486 pages.
2004.

Vol. 3108: H. Wang, J. Pieprzyk, V. Varadharajan (Eds.),
Information Security and Privacy. XII, 494 pages. 2004.

Vol. 3107: J. Bosch, C. Krueger (Eds.), Software Reuse:
Methods, Techniques and Tools. XI, 339 pages. 2004.

Vol. 3106: K.-Y. Chwa, J.I. Munro (Eds.), Computing and
Combinatorics. XIII, 474 pages. 2004.

Vol. 3105: S. Gébel, U. Spierling, A. Hoffmann, I. lurgel,
O. Schneider, J. Dechau, A. Feix (Eds.), Technologies for
Interactive Digital Storytelling and Entertainment. XVI,
304 pages. 2004.

Vol. 3104: R. Kralovic, O. Sykora (Eds.), Structural In-
formation and Communication Complexity. X, 303 pages.
2004.

Preface

A large class of computing systems can be specified and verified by abstracting
away from the temporal aspects of their behavior. In real-time systems, instead,
time issues become essential. Their correctness depends not only on which ac-
tions they can perform, but also on the action execution time. Due to their
importance and design challenges, real-time systems have attracted the atten-
tion of a considerable number of computer scientists and engineers from various
research areas.

This volume collects a set of papers accompanying the lectures of the fourth
edition of the International School on Formal Methods for the Design of Com-
puter, Communication and Software Systems (SFM). The school addressed the
use of formal methods in computer science as a prominent approach to the rig-
orous design of computer, communication and software systems. The main aim
of the SFM series is to offer a good spectrum of current research in foundations
as well as applications of formal methods, which can be of help for graduate
students and young researchers who intend to approach the field.

SFM-04:RT was devoted to real-time systems. It covered formal models and
languages for the specification, modeling, analysis, and verification of these time-
critical systems, the expressiveness of such models and languages, as well as
supporting tools and related applications in different domains.

The opening paper by Rajeev Alur and Parthasarathy Madhusudan pro-
vides a survey of the theoretical results concerning decision problems of reach-
ability, language inclusion, and language equivalence for timed automata. The
survey is concluded with a discussion of some open problems. Elmar Bihler and
Walter Vogler’s paper presents timed extensions of Petri nets with continuous
and discrete time and a natural testing-based faster-than relation for comparing
asynchronous systems. Several applications of the theory are also presented.
Jos C.M. Baeten and Michel A. Reniers present the theory and application
of classical process algebras extended with different notions of time and time
passing and compare their expressiveness via embeddings and conservative ex-
tensions. The PAR communication protocol is considered as a case study. The
expressiveness of existing timed process algebras that deal with temporal as-
pects by following very different interpretations is also the main theme of Diletta
R. Cacciagrano and Flavio Corradini’s paper. In addition, they compare the ex-
pressiveness of urgent, lazy and maximal progress tests. Mario Bravetti presents
a theory of probabilistic timed systems where durations are expressed by gen-
erally distributed random variables. The theory supports the specification of
both real-time and stochastic time during the design and analysis of concurrent
systems. Bran Selic, instead, provides an overview of the foundations of the run-
time semantics underlying the Unified Modeling Language (UML) as defined in
revision 2.0 of the official OMG standard.

Table of Contents

Part I: Models and Languages

Decision Problems for Timed Automata: A Survey 1
R. Alur and P. Madhusudan

Timed Petri Nets: Efficiency of Asynchronous Systems.................. 25
E. Bihler and W. Vogler

Timed Process Algebra
(With a Focus on Explicit Termination and Relative-Timing) 59
J.C.M. Baeten and M.A. Reniers

Expressiveness of Timed Events and Timed Languages.................. 98
D.R. Cacciagrano and F. Corradini

Real Time and Stochastic Time 0 132
M. Bravetti

On the Semantic Foundations of Standard UML 2.0 181
B.V. Selic

Part II: Tools and Applications

A Tutorial on UPPAAL 200
G. Behrmann, A. David, and K.G. Larsen

The IF Toolsetcoounuuininiiinee e 237
M. Bozga, S. Graf, I. Ober, 1. Ober, and J. Sifakis

Embedded Software Analysis with MOTORooovonon. .. 268
J.-P. Katoen, H. Bohnenkamp, R. Klaren, and H. Hermanns

Author Index 295

Decision Problems for Timed Automata:
A Survey*

Rajeev Alur and P. Madhusudan

University of Pennsylvania

Abstract. Finite automata and regular languages have been useful in
a wide variety of problems in computing, communication and control,
including formal modeling and verification. Traditional automata do not
admit an explicit modeling of time, and consequently, timed automata (2]
were introduced as a formal notation to model the behavior of real-time
systems. Timed automata accept timed languages consisting of sequences
of events tagged with their occurrence times. Over the years, the formal-
ism has been extensively studied leading to many results establishing
connections to circuits and logic, and much progress has been made in
developing verification algorithms, heuristics, and tools. This paper pro-
vides a survey of the theoretical results concerning decision problems
of reachability, language inclusion and language equivalence for timed
automata and its variants, with some new proofs and comparisons. We
conclude with a discussion of some open problems.

1 Timed Automata

A timed automaton is a finite automaton augmented with a finite set of (real-
valued) clocks. The vertices of the automaton are called locations, and edges are
called switches. While switches are instantaneous, time can elapse in a location.
A clock can be reset to zero simultaneously with any switch. At any instant,
the reading of a clock equals the time elapsed since the last time it was reset.
With each switch we associate a clock constraint, and require that the switch
may be taken only if the current values of the clocks satisfy this constraint.
Timed automata accept (or, equivalently, generate) timed words, that is, strings
of symbols tagged with occurrence times. Let IR denote the set of nonnegative
real numbers, and let @ denote the set of nonnegative rational numbers. A
timed word over an alphabet X is a sequence (ao, to), (a1,t1) - (ak,tx), where
each a; € X, each t; € IR, and the occurrence times increase monotonically:
to <t < --+ < tg. The set of all timed words over ¥ is denoted T'X*. A timed
language over X is a subset of T'X™.

The untimed word corresponding to a timed word (ao, to), (a1,t1) - - - (ax, tk)
is the word aga .. .ax obtained by deleting the occurrence times. The untimed
language untime(L) of a timed language L consists of all the untimed words
corresponding to the timed words in L. For an alphabet X, we use X to denote

* This research was partially supported by NSF award ITR/SY 0121431.

M. Bernardo and F. Corradini (Eds.): SFM-RT 2004, LNCS 3185, pp. 1-24, 2004
© Springer-Verlag Berlin Heidelberg 2004

2 R. Alur and P. Madhusudan

X U {e} (where € is not in X'), and for a subset X' C X, and a timed word
w = (ag,to), (a1,t1) - - - (ak, tx) over X, the projection of w over %’ is obtained
from w by deleting all (a;, t;) such that a; € X’. The projection operation extends
to timed languages as well.

To define timed automata formally, we need to say what type of clock con-
straints are allowed as guards. For a set X of clocks, the set ®(X) of clock
constraints g is defined by the grammar

gi=x<c|c<z|z<clec<zT|gAg

where z € X and ¢ € Q. A clock valuation v for a set X of clocks assigns a
real value to each clock; that is, it is a mapping from X toIR. For § e R, v + §
denotes the clock valuation which maps every clock = to the value v(z) + 6. For
Y C X, v[Y := 0] denotes the clock valuation for X which assigns 0 to each
z € Y, and agrees with v over the rest of the clocks.

A timed automaton A over an alphabet X is a tuple (V,V°, VF X E), where

— V is a finite set of locations,

— VO C V is a set of initial locations,

— VF C V is a set of final locations,

— X is a finite set of clocks,

- ECVxXx®X)x2X x Vis a set of switches. A switch (s,a,9,A,8")
represents an edge from location s to location s’ on symbol a. The guard g
is a clock constraint over X that specifies when the switch is enabled, and
the update A C X gives the clocks to be reset to 0 with this switch.

The semantics of a timed automaton A is defined by associating an infinite-state
automaton S, over the alphabet X' UIR. A state of S4 is a pair (s,v) such that
s is a location of A and v is a clock valuation for X. A state (s,v) is an initial
state if s is an initial location (i.e. s € V°) and v(zx) = 0 for all clocks z. A state
(s,v) is a final state if s is a final location (i.e. s € VF). There are two types of
transitions in Sy4:

Elapse of time: for a state (s,v) and a time increment § € R, (s,v) A,
(s,v+9).

Location switch: for a state (s,v) and a switch (s, a, g,), s’) such that v sat-
isfies the guard g, (s,v) = (s',v[:=0]).

For a timed word w = (ao, o), (a1,t1) - - - (ak, tx) over X¢, a run of A over w is
a sequence

0 g Ba "D B g By - B
such that go is an initial state of S4. The run is accepting if g4, is a final state
of S4. The timed automaton A accepts a timed word w over X if there exists
a timed word w’ over X¢ such that A has an accepting run over w’ and the

projection of w’ to X' is w. The set of timed words accepted by A is denoted
L(A).

Decision Problems for Timed Automata: A Survey 3

a,b a,bz #1

Fig. 1. A non-complementable timed automaton.

a,z=1,2:=0

e,z=1,z:=0

Fig. 2. e-transitions increase expressiveness.

A timed language L C TX* is said to be timed regular if there exists a timed
automaton A such that L(A) = L. The closure properties of timed regular
languages are summarized below:

Theorem 1. The set of timed regular languages is closed under unton, inter-
section, and projection, but not under complementation [2].

The closure under union and intersection is established by extending the classical
product construction to timed automata. Closure under projection is immediate
since switches can be labeled with e.

For the non-closure under complementation, we give a new proof here. Let
XY = {a,b}. Let L be the timed language consisting of timed words w containing
an a event at some time t such that no event occurs at time ¢t + 1. The (non-
deterministic) timed automaton shown in Figure 1 (with initial location s; and
final location s2) accepts L.

We claim that I, the complement of L, is not timed regular. Consider the
timed language L' consisting of timed words w such that the untimed word of
w is in a*b*, all the a events happen before time 1, and no two a events happen
at the same time. Verify that L’ is timed regular. Observe that a word of the
form a™b™ belongs to untime(L N L') iff m > n. Since timed regular languages
are closed under intersection, the untimed language of a timed regular language
is regular (see Section 2), and the language {a™b™ | m > n} is not regular, it
follows that L is not timed regular.

Unlike classical automata, e-labeled switches add to the expressive power of
timed automata [10]. For example, the automaton of Figure 2 accepts timed
words w over {a} such that every occurrence time is an integer and no two a-
events occur at the same time. This language cannot be accepted by a timed
automaton if e-labeled switches are disallowed: if the largest constant in a timed
automaton A is ¢ and A does not have e-labeled switches, then A cannot distin-
guish between the words (a,c+ 1) and(a,c+ 1.1).

4 R. Alur and P. Madhusudan

The more recent definitions of timed automata also admit labeling of each
location with a clock constraint called its invariant, and require that time can
elapse in a location only as long as its invariant stays true [23]. While this is a
useful modeling concept to enforce upper bounds (without introducing “error”
locations), it does not add to the expressive power.

Timed languages can also be defined using timed state sequences: a timed
state sequence is a mapping from a prefix of the reals to a finite alphabet that
can be represented by a sequence (ao,Io)(a1,11) ... (ax, Ix), where Iy, I1,... I
is a sequence of adjoining intervals (e.g. [0,1.1)[1.1,1.2](1.2,1.7)). Timed state
sequences can be generated by timed automata in which locations are labeled
with observations [23,3]. This dual view does not change the core results, but
some expressiveness results do differ in the two views [34].

2 Reachability and Language Emptiness

2.1 Region Automata

Given a timed automaton A, to check whether the language L(A) is empty, we
must determine if some final state is reachable from an initial state in the infinite-
state system S 4. The solution to this reachability problem involves construction
of a finite quotient. The construction uses an equivalence relation on the state-
space that equates two states with the same location if they agree on the integral
parts of all clock values and on the ordering of the fractional parts of all clock
values. The integral parts of the clock values are needed to determine whether
or not a particular clock constraint is met, whereas the ordering of the fractional
parts is needed to decide which clock will change its integral part first. This is
formalized as follows. First, assume that all the constants in the given timed
automaton A are integers (if A uses rational constants, we can simply multiply
each constant with the least-common-multiple of all the denominators to get
an automaton with the same timed language modulo scaling). For any 6 € IR,
(0) denotes the fractional part of §, and |0] denotes the integral part of ¢;
6 = |8] +(d). For each clock ¢ € X, let c, be the largest integer ¢ such that z is
compared with c in some clock constraint appearing in a guard. The equivalence
relation =, called the region equivalence, is defined over the set of all clock
valuations for X. For two clock valuations v and u, v 2 p iff all the following
conditions hold:

1. For all clocks z € X, either |v(x)| and |u(z)| are the same, or both v(x)
and p(z) exceed c;.
2. For all clocks z,y with v(z) < ¢, and v(y) < ¢y, (v(z)) < (v(y)) iff (u(z)) <

((y))-
3. For all clocks z € X with v(z) < ¢, (v(z)) =0 iff (u(x)) = 0.

A clock region for A is an equivalence class of clock valuations induced by .
Note that there are only a finite number of regions, at most k!- 4% . IT, . x(cz+1),
where k is the number of clocks. Thus, the number of clock regions is exponential
in the encoding of the clock constraints.

Decision Problems for Timed Automata: A Survey 5

The key property of region equivalence is its stability: for any location s, and
clock valuations v and v’ such that v = v/, (a) for any ¢ € IR, if (s,v) 5 (s,v+9)

then there exists 0’ € IR such that (s, /) .7 (s,v'+0’) and (v+46) = (v'+¢'), and
(b) for every label a € X and state (¢, u), if (s,v) > (t,) then there exists p’
such that (s,v') % (t,u’) and p = u'. Thus, if two states are equivalent, then an
a-labeled discrete switch from one can be matched by a corresponding discrete
switch from the other leading to an equivalent target state, and if the automaton
can wait for § units in one state, then it can wait for §’ units, possibly different
from 4, resulting in equivalent states. For this reason, the region equivalence is
a time-abstract bisimulation.

For a timed automaton A, the quotient of S4 with respect to the region
equivalence is called the region automaton of A, and is denoted R(A): vertices
of R(A) are of the form (s,), where s is a location and 7 is a clock region; there
is an edge (s,7) -5 (s',7') in R(A) for a € X¢ iff for some clock valuations v €
and v € 1/, (s,v) 5 (s',v') in Sy, or, a = € and (s,v) 2, (s',v") for some
0 € IR. The initial and final states of S4 are used to define the initial and final
vertices of R(A). Now, the language of R(A) is the untimed language of L(A).

Theorem 2. For a timed regular language L, untime(L) is a reqular language

12

Consequently, R(A) can be used to solve language emptiness for A, and also
to answer reachability queries for A. Thus, emptiness and reachability can be
solved in time linear in the number of vertices and edges of the region automaton,
which is linear in the number of locations and edges of A, exponential in the
number of clocks, and exponential in the encoding of the constants. Technically,
these problems are PSPACE-complete.

Theorem 3. The language emptiness question for timed automata is PSPACE-
complete, and can be solved in time O(m - k!- 4% . (c- ¢’ 4+ 1)*), where m is the
number of switches in A, k is the number of clocks in A, c is largest numerator in
the constants in the clock constraints in A, and ¢’ is the least-common-multiple
of the denominators of all the constants in the clock constraints of A [2].

In [15] it was also shown that for timed automata with three clocks, reach-
ability is already PSPACE-complete. A recent result [28] shows that for timed
automata with one clock, reachability is NLOGSPACE-complete and for timed
automata with two clocks, it is NP-hard. The reachability problem remains
PSPACE-hard even if we bound the magnitudes of constants [15].

2.2 Cycle Detection

A timed w-word is an infinite sequence of the form a = (ag,to)(a1,t;)...
(@i, ti),..., with a; € £, t; € R, and tg < t; < ---t; < ---, and timed w-
language is a set of timed w-words. Reasoning in terms of infinite timed words,
as in the untimed setting, is useful for checking liveness properties. The notion

6 R. Alur and P. Madhusudan

of a run of a timed automaton A naturally extends to timed w-words. A timed
w-word « is accepted by A using the Biichi condition, if there is a run of A
on a that repeatedly hits (infinitely often) some final location in VFE. The set
of w-words accepted by A is denoted by L, (A). Checking whether L, (A) is
nonempty, for a given A, can be done by checking whether there is a cycle in
the region graph of A which is reachable from an initial state and contains some
state in V¥

For infinite words, it is natural to require that time diverges, that is, the
sequence to,t1,...t;, ... grows without bound. Timed words that do not diverge
depict an infinite number of events that occur in a finite amount of time. To
restrict L,,(A) only to divergent words, we can transform the timed automaton
by adding a new clock = which is reset to 0 whenever it becomes 1 (using an
e-edge) and the timed automaton hits the new final set Vi only if the run had
passed through Vr in the last one unit of time.

Theorem 4. Given a timed automaton A, the problem of checking emptiness of
L, (A) is PSPACE-complete.

Most of the results in this survey hold for timed w-languages also.

2.3 Sampled Semantics

In the discrete-time or sampled semantics for timed automata, the discrete
switches, or the events, are required to occur only at integral multiples of a
given sampling rate f. This can be formalized as follows. Given a timed automa-
ton A and a sampling rate f € Q, we define an automaton Sﬁ;: the states, initial
states and final states of Sj; are the same as the states, initial states, and final
states of S4, and the transitions of S f; are the transitions of S4 that are labeled
with either a € X¢ or with m.f (where m € N). The sampled timed language
LY (A) is defined using the automaton S,{;. Note that time of occurrence of any
symbol in the timed words in Lf(A) is an integral multiple of the sampling fre-
quency f. To check emptiness of Lf(A), observe that in any reachable state of
S’fx, the values of all clocks are integral multiples of f, and this can lead to a
reduced search space compared to the region automata. However, the complexity
class of the reachability and cycle-detection problems stays unchanged (here L
denotes the set of w-words where events occur at sampling rate f):

Theorem 5. Given a timed automaton A and a sampling rate f € Q, the prob-
lem of checking the emptiness of Lf(A) (or Lf(A)) is PSPACE-complete.

If the sampling rate f is unknown, the resulting problems are the discrete-
time reachability and discrete-time cycle-detection problems with unknown sam-
pling rate: given a timed automaton A, does there exist a rational number f € Q
such that Lf(A) (or Lf (A)) is nonempty. Discrete-time reachability for unknown
sampling rate is decidable since it is equivalent to the question of whether L(A)
is empty: if L(A) is nonempty, we can find a word in L(A) where events occur at

Decision Problems for Timed Automata: A Survey 7

a,y=1,y:=0

@

bz>1,z:=0

Fig. 3. Sampled semantics is different from the standard semantics.

rational times, and by choosing an appropriate [, show that it is an f-sampled
word. However, the discrete-time cycle-detection problem with unknown sam-
pling rate is undecidable:

Theorem 6. Given A, the problem of checking whether UfeQ Li(A) is
nonempty, is undecidable [1/].

The undecidability proof is by reduction from the halting problem for two-
counter machines. Given a two-counter machine M , one can construct a timed
automaton Aps and a location sg such that for any integer n, the location sp
is reachable in the discrete-time semantics with the sampling rate 1/n iff the
two-counter machine M has a halting run in which both the counters do not
exceed the value n.

To see that L,,(A) can be nonempty while for each f, L{,(A) = 0, consider the
automaton in Figure 3. While the a-events occur at integer times, the b-events
have to occur closer and closer to the a-events, and fixing any sampling rate f
makes the w-language empty.

2.4 Choice of Clock Constraints and Updates

The clock constraints in the guards of a timed automaton compare clocks with
constants. Such constraints allow us to express (constant) lower and upper
bounds on delays. Consider the following generalization of clock constraints:
for a set X of clocks, the set &4(X) of clock constraints g is defined by the
grammar

g:::cgclchIz—y§c|x<c|c<:cfx—y<cfg/\g

where z, y are clocks in X and ¢ € @. Including such “diagonal” clock constraints
that compare clock differences with constants does not change the complexity
of reachability. Similarly, we can relax the allowed updates on switches. In the
original definition, each switch is tagged with a set A which specifies which clocks
should be reset to zero. A more general update map A maps clocks in X to QU X
specifying the assignments z := A(z). Thus, z can be assigned to an arbitrary
rational constant, or to the value of another clock. Both these modifications can
be handled by modifying the region construction. In fact, both these extensions
do not add to the expressive power.

Theorem 7. If the clock constraints for guards are chosen from the set &4(X),
and the switches are annotated with the update maps, the expressive power of

