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ABSTRACT

In this paper, we present a new technique based on feature
localization for.segmenting and tracking objects in videos. A
video locale is a.sequence of image feature locales that share
similar features (color, texture, shape, and motion) in the spatio-
temporal domain of videos. Image feature locales are grown
from tiles (blocks of pixels) and can be non-disjoint and non-
connected. To exploit the temporal redundancy in digital videos,
two algorithms (intra-frame and inter-frame) are used to grow
locales efficiently. Multiple motion tracking is achieved by
tracking and performing tile-based dominant motion ¢stimation
for each locale separately.

1. INTRODUCTION

In many applications, the ability to automatically locate and track
objects in videos is very important. The most intuitive way of
accomplishing this task is to first generate temporally-tracked
homogeneous regions and then apply further processing
(automatic or human-aided) to identify the semantic objects.

In [8], we proposed Feature Localization as an alternative to
traditional image segmentation in respect to object-based image
retrieval. Locales are enclosures of local features that are not
required to be connected, disjoint, or complete. Locales also
operate at a higher level than pixels, as the basic building units
used are tiles that correspond to blocks of pixels (e.g., 16X16 or
8x8). Localization is not merely a reduced-resolution method;
pixel-based statistics are collected and used throughout the
process without loss of high-resolution details. One of the
advantages of localization is that it generates coarse locales that
are more robust to noise and complex object sprfaces. It is also
much more attainable as it does not require complete pixel-level
segmentation.

In this paper, we describe video locales that exploit the
temporal redundancy in digital videos. The new method deals
with object segmentation and tracking which are important
issues for object-based video coding. Initially, we use a
pyramidal probabilistic-unforced-linking algorithm to extract
high quality color locales (using color as the main feature) within
a video frame. For subsequent frames, a modified algorithm is
used to exploit the similarities between consecutive video
frames. Finally, extracted locales from consecutive frames are
matched and dominant motion estimation is camed out for each
matching pair of locales to provide temporal tracking. Since
each locale is tracked separately, the method has the potential to
tackle motions of multiple objects. Our motion estimation
algorithm also follows the philosophy that all calculations are
done based on tiles while keeping pixel-unit precision; hence we
gain the advantage of utilizing both global and local information.
Experiments have shown impressive results.
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2. FEATURE LOCALIZATION CONCEPT
Feature localization was introduced and described in [8).
Definition 1: A locale Lyis a local enclosure of feature /.

A locale Ly uses blocks of pixels called siles as its building units,
and has the following descriptors:

1. Envelope Ry: a set of tiles representing the locality of Ly

2. Geometry: mass M(Ly), centroid C(Ly), and pixel variances.
3. Color, texture, and shape parameters of the locale.

After a localization process the following is often true:

1. Locales are not connected: 3f: Lyis not connected.

2. Locales are non-disjoint: 3f3g:Lin L2 D, f=g

3. Non-completeness: UyLs# /, not all pixels are represented.

3. VIDEO LOCALES ALGORITHM

Our approach is to create video locales that are coarse but

accurate approximations for both object locations and

movements. A video locale is a sequence of image feature

locales that share similar features (color, texture, shape, and

motion) in the spatio-temporal domain of videos. Using color as

the main feature to localize, we extract image locales from each

frame and then perform motion estimation based on tiles (while

making use of pixel-precision statistics). We extend our

localization algorithm to take advantage of temporal

redundancies in videos.

There are 3 major components in the algorithm:

1. Intra-frame Locales generation using pyramidal probabilistic-
unforced-linking.

2. Inter-frame Locales generation exploiting motion-compensated
frame similarity for subsequent frames.

3. Locale motion estimation using tile-based energy minimization
for 2D affine motion.

The Inter-frame algorithm automatically switches to Intra-frame

processing if scene and shot changes occur (see Section 3.3).

3.1 Overall Algorithm
The overall algorithm for video object segmentation and tracking
is as follows:
I. Read a frame from vidco.
2. If this is first frame,
a. Generate Intra-frame Locales
3. Else
a. Generate Inter-frame Locales
b. Match locales from current frame to reference frame
c. Perform motion estimation for each locale
4. Repeat 1 - 3 until end of video.

3.2 Intra-Frame Locale Generation
The intra-frame algorithm uses information within the vidco
frame only. There are two major steps. Tiles are first generated



from the image and then they are linked into locales m a
pyramidal scheme.

3.2.1 Tile Generation

A relatively simple histogram analysis is performed to
estimate the different dominant colors in a block of pixels. For
each tile, an RGB histogram with bin widths 32 x 32 x 32 is
constructed and the 5 most frequent color bins become the
dominant colors for the tile. After the dominant colors are
determined, each pixel in the tile is assigned to the closest
dominant color. Each dominant color becomes a tile-feature and
the average RGB is used as thc final color. Geometrical
statistics mentioned in Section 2 are calculated for each tile-
feature. If there are more than one tile-feature in a tile, we say
that the tile-features arc overlapped.

Integer RGB values are used in this stcp for computational
simplicity. Although RGB is not as perceptually accurate as
other measures, we find that it gives good enough estimates. In
subsequent processing, chromaticity and luminance are used
instead.

Pscudo-code for the entirc tilc generation process and
transitional/noise pixel deterrnination is outlined in Procedure 1
and 2 respectively.

Procedure 1: Tile Creation
1. Calculate Dominant Colors:
a. Create an RGB histogram {32 x 32 x 32 RGB bins) for the non-
transitional and non-noise pixels.
b. Merge color bins using intensity and chromaticity.
c. 5 most frequent color bins are the Dominant Colors.
2. Assign each pixel (incL transitional & noise) to closest dowinant color.
3. A Tile-Feature (Locale) 1s created for cach dominant color.
Procedure 2: Noise/Tr | Pixel Determinati
1. Transitional:  intensity is on a steep slope of any 2 of 8 neighbour
pixels.
< than 2 ncighbours with similar intensiry.
3.2.2 Locale Growing Pyramid
In previous papers [8] we employed a bonom—dp pyramid linking
method for merging the tiles into locales; however. this is
plagued by onc of the most confounding problems for bottom-up
image segmentation methods: forced-decisions with local or
incomplete information. Most decisions have to be made at the
lowest level, which is characterized by local and noisy data, and
wrong decisions propagate through the pyramid to cause
naccurate results. In [5]. T. H. Hong and A. Rosenfeld
introduced an unforced-linking algorithm in which classification
decisions are deferred until more information is available.
Instead of forcing a pixel in the lower level to link with one
parent in the upper level, the pixel is linked to multiple parents
with probabilistic weights derived from their gecomctric and
intensity similarities. Multiple iterations updatc the weights
until they finalize. Pixels are then assigned to their most
strongly linked parent (region). The advantage of this method is
that errors made at low levels can be recovered afier a few
iterations.

This is the strategy we employ where overlapping tile-
features and locales are used in the place of pixels. Parent locale
statistics arc updated using probabilistic weighting for two
purposes: (1) rcduce impact of outliers and noise, and (2)
propagate weights to next level. When a child locale is merged
into the parcnt locale wrongly or as an outlier, the link
probability 1s low so it would not contnibute as much to the

2. Noise:
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parent locale as others. Note that each child locale can be
compared to more than 4 parents because parent locales may
overlap {each node is a list of locales); hence, as we move up in
pyramid levels, tile-details (which are measured with pixel
precision) are not lost while global information is gained. This is
the main reason why this algorithm is not merely a multi-
resolution analysis.

3.3 Inter-Frame Locale Generation

Discrepancies between two consecutive frames are mostly caused
by four things: noise, object and camera movements, introduction
of new objects, and special visual effects including cut, wipe and
dissolve transitions. Since locales are fairly robust to small
noise, we do not worry about noise. Object and camera
movcments account for most of the changes in videos. Our goal
is to modcl and predict these movements. Motion estimation
enables us to gencrate inter-frame locales quickly and at the
same time provides locale tracking. The other two causes cannot
be predicted so we always scan all pixels at least once to update
such changes.

In the intra-frame algorithm, most of the computation time
is spent on calculating dominant _colors within the tiles and on
iteratively linking and re-linking nodes at the bottom-most level
in the pyramid. Dominant colors calculation is costly because it
is mostly a pixel-level computation. Similarly, the bottom
pyramid level has as many nodes as tiles.

Our strategy is to minimize those two steps. Assume that
we have 2D affine motion estimation for each locale on the
reference frame (discussion for motion estimation is deferred
until Section 3.4). We first transform the envelopes of the
locales onto the current frame according to their motion
estimation. This prediction carries with it two major pieces of
information for each tile in the current frame: predicted dominant
colors and predicted tile-featurc ownership. Each locale appends
its color to the dominant color list of the tiles within its cnvelope,
and all tile-features created for that color are assumed to link to
that locale; hence, dominant color calculation is skipped, and the
unforced-linking step is also skipped. If the predicted motion is
100% accurate, this will produce optimal results with almost no
work.

After the dominant colors are predicted, we examine each
pixel in each tile, update tilc-features’ statistics, and extract any
unpredicted tile-features (new colours). These new tile-fcatures
arc then linked into locales in a partial pyramid that involves
only the new tilc-fcatures. The new locales are mcrged or
appended to the predicted locales. Scene changes or large
occlusions will generate many unpredicted tile-featurcs, and full
pyramid linking (as in Intra-processing) is performed in such
cases.

Procedure 3 shows pseudo-code for the algorithm used for
generating inter-frame locales. Inter-frame quality is almost
identical to intra-frame but the average inter-frame computation
time is only 25% of that of the intra-frame. For frames that have
little motion or thosc that contain very predictable movements,
computation times are as low as 10% of the intra-frame time.
Procedure 3: Inter-frame Locales Algorithm

1. Predict a locale for each reference locale in previous trame.
2. Update Tiles
a. For each reference locale that is big enough:

i. Predict envelope from motion vector in last frame.
i, Append its color to all iniersecung tikes.



b. For cach tile:
1. Assign cach pixel 1o closest predicted dominant color
and keep 1op 5.
n.  Each tile-feature is predicted 1o belong to the color’s
corresponding locale.
in. If more than 20% pixels have unpredicted colors,
recalculate tiles as in Intra and recover ownership:
I. For each tile-feature, match it 1o closest dominant
color list and hink it 1o comresponding locale.
2. Count # tiles that contain unclaimed tile-features.
3. Locales Linking
a. If # unpredicted tiles < Y of image
i.  Pyramid-grow the unclaimed tile-features.
. Merge the grown locales with predicted locales.
b. Else, re-grow all tiles as in intra-frame.

3.4 Locale Motion Estimation

The simplest way to estimating locale motion is locale-centroid
displacement. The vector given by the movements of a locale’s
centroid provides a rough estimation to the translation vector for
the whole locale; however, a two-dimensional translation model
may not be sufficient in the presence of scaling and rotation.
Furthermore, centroids are calculated as an average and therefore
they are sensitive to outliers. [t is more intuitive to examine the
locale envelope directly as the goal is to predict how the
envelope transforms across time.

Many motion segmentation algorithms exist in the
literature. There are two main approaches: dominant motion
method that derives motion directly from spatiotemporal image
intensity gradient information; and indirect methods that first
estimate optical flow field and then determine parameters and
support for multiple motion models, such as motion parameter
clustering, maximum likelihood (ML) segmentation, and
maximum a posteriori probability (MAP) segmentation [11].

In this experiment, we adopt the dominant motion approach
using over-lapping tiles as the base wnit to extract a good
approximation for the overall motion of each locale. It is
possible that a single locale may cxhibit multiple motions,
especially locales from non-rigid and articulate objects. The
dominant motion approach provides a very intuitive and direct
way of extracting the overall movement.

3.4.1 Matching Locales

Since we are tracking color locales, we make the assumption that
we can model most changes in the locale cnvélopes by a 2D
affine model. This is usually the case when the 3D scene is
sufficiently distant from the camera, which is quite common in
most videos [7). (In this paper, we use the 6-parameter affine
model.

Suppose we call the affine transform a,.b,,c,,a,,b,,c,,
then the 2-D motion (Ax, Ay) of a pixel is:

Ax=a.x+by+c ,Ay=ax+b,y+c, (3.5)
If we assume image motion is small, then a Taylor series
expanded only to linear terms is expected to be sufficiently
accurate fo descnibe the image motion. This results in the optical
flow equations [6, 9]. For an affine motion, the least-square
solution over a region of interest is the solution of a 6 X 6 matrix
times the unknown 6-vector ( a,,b,,c,,a,,b,,c, ), with the right-
hand-side being a forcing vector.

Since locale dominant motion estimation is carried out for
each locale separately, only the envelope of one object is

546

considered and the dominant motion assumption should hold
valid for most cases. It is rare that an individual object will
exhibit equal competing motions. Also, the iterative process and
change detection can be avoided because there is only one motion
to extract. Pixel-noise is minimized when tiles arc used as the
observation points. Finally, in the case of low spatial gradient
regions, this can be detected by a motion reliability measure
defined in [7] and we can recover by falling back on locale-
centroid displacement to give us an estimation of the translation
vector. Procedure 4 illustrates the pseudo-code for the motion
estimation process.

Procedure 4: Locale Motion Estimation

1. For each (locale, reference locale) pair:
a. If both Locale and reference Locale have > § tiles:
i. Region of interest = union of tile envelopes

it.  Estimate Dominant Translation (d,,d .
tii. Translawre Reference locale tiles by (d, ,dr)
iv. Estimate Affine Transform a_,b,,¢,.a b, ,c,
v. Compose the two transforms
vi. If near-singular condition, go to step b.
b. Else:
i. (c, W€y ) = Centroid displacement.

4. EXPERIMENTAL RESULTS

We have implemented the above algorithms in our system which
can read any video formats and display locales in real-time.
Figure | compares the results of inter-frame algorithm with those
of intra-frame algorithm. The difference in quality is very small
even though on average the Inter-frame algonthm is 70% faster
than the intra-frame algorithm (see Table 1). On a modem PC
our algorithm should be able to run at 20-30 frames per second.

We evaluate the quality of our motion estimation algorithm
by monitoring the number of unpredicted tiles. The tile-based
dominant motion estimation algorithm (DM) is compared against
other methods: (1) assume all objects are stationary (SA), {2)
predict translation by locale-centroid displacement (CD). Table
2 summarizes the results. As expected, stationary assumption
method performs the worst while tile-based dominant motion
estimation has the best performance. When motion cannot be
well predicted by the affine model (as in the wiggling fish
scene), centroid displacement is as good as dominant motion
estimation.

In Figure 2, a video sequence with lots of motion and
occlusions is tested under the full algorithm (intra-frame & inter-
frame). Color localization is very effective even though it is a
difficult video. Figure 3 shows the tracking of a hockey player
by his blue jersey. Notice that the localization approach
overcomes the problems of disconnected regions (stripes, logos,
jersey) and complex motion to provide good tracking result.

5. CONCLUSION

In this paper, we presented a new algorithm for video object
segmentation and tracking in a localization framework. An
unforced-linking pyramidal scheme is used to achieve good
localization, and temporal redundancy is exploited by an inter-
frame algorithm. Fast, effective, object-based dominant motion
estimation is possible because of the introduction of video
locales. Experimental results show that video objects from a
varicty of "natural scenes can be effectively segmented and
tracked.



Potential applications of this work include object
segmentation and tracking in sports coverage and surveillance,
video summarization, and object-based video coding.

Many future improvements are possible. Currently the
motion estimation does not address the merge/split problem. if a
locale is split, only part of the envelope is used in estimating
motion. In future we will investigate ways of allowing multiple-
locales matching to track down all the vanous parts of a split or
merged-locale. An adaptive threshold scheme will also help.
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Table 1. Timing on Pentium 1 400 (ms per frame)

~800 320x240 frames Intra-frame Inter-frame
Mean 5 330.3 95.9
Mini 208.0 37.0
Marxi 587.0 455.0
Standard Deviation 95.5 42.0
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Table 2. Motion Estimation Performance:

Scene Sequences | Met Unpredicted % of Total Tiles
hod Tiles per frame (1600)

Simple linear SA 249.52 15.595%
motion CD 0.34 0.022%
(Scrolling texts) | DM 0.24 0.015%
Non-lincar SA 177.89 11.118%
motion CD 56.44 3.528%
(Wiggling fish) | DM 57.51 3.594%
High motion & SA 342.75 21.422%
Complex scene CcD 105.65 6.603%
(Football) | DM 83.66 5.229%

Intra-frame Images

Inter-frame

e <]

Figure 1. Intra-frame & Inter-frame algorithms results

Figure 2. Video sequences: original frames are shown on top, followed by composed locales.
The numbers below the sequences show the number of locales in each frame.

Figure 3. Object Tracking: the blue jersey of the

ockey player is being tracked.

Figure shows the blue locale by its envelope and bounding box.
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Abstract

Motion is an important cue for video content percep-
tion. However, the lacking of effective motion representa-
tion becomes a barrier for aut ic video content analy-
sis. In this paper, we propose a new motion descriptor
to capture motion pattern from video clip. First, we trans-
form motion vector field 10 a number of directional slices
of energy. Then, these slices are measured by a set of
moments. As a result, a multi-dimensional vector, called
Motion Texture, is formed. The effectiveness and effi-
ciency of the proposed representation had been validated
by motion-based shoi retrieval experiments.

1. Introduction

To extract efficient motion representation from video
clip still remains a challenging issue in the filed of video
content analysis. It is not only because motion is a com-
plex mixture of object and camera motions, but also be-
cause motion is a kind of information hidden in the tem-
poral variances of other visual features, e.g., color, shape
and texture. Without an effective representation, it is
difficult to fully utilize motion information in automatic
video content analysis, including content-based video
retricval, video classification, events detection, and so on.

Motion estimation is a conventional method to ex-
tract motion information from two consecutive frames [1].
Parametric global motion cstimation gencrates the para-
metric model of camera motion or dominant motion, such
as affine model. While non-parametric motion estimation
gencrates a field of displacement pairs, such as optical
flow. Both results of the two methods can be used as
motion representations directly. For example, the optical
flow is used for video indexing in [2]. However, the for-
mer is much coarse, and the latter is over fine for describ-
ing motion characters. Since human usually only concerns
object motion. and cannot be aware of the existence of
camera motion, one of semantic motion representations is
the exact trajectory of moving object. In order to extract
motion trajectories, the technologies of object segmenta-
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tion and tracking [3], or motion layer extraction [4] are
often adopted. However, the unreliability of automatic
objects extraction makes it impossible to obtain exact
object trajectories in the most of cases. So, as a simpli-
fied aliernative, the motion regions’ trajectories are ex-
tracted and applied to video retrieval in [5]. Another
motion extraction method is based on the temporal slices
of image volume [6, 7. 8}. In (8], Ngo characterized mo-
tion using multiple slices and tensor measurement. The
temporal slices encode rich motion clues which are very
uscful for specific motion characterization, but they also
have many confusable visual patterns that cannot be
suppressed casily.

In this paper, we present a new motion representation
bascd on non-parametric motion estimation. By measur-
ing the energy distribution, we obtain a multi-dimensional
vector, called Motion Texture. The motion texture can
capture the motion patterns in video clip compactly and
effectively, which have been validated by motion based
shot retrieval cxperiments.

The rest of this paper is organized as follows. First,
the conception of motion texture is introduced in Section
2. Then, a similarity measure of motion texture is defined
in Section 3. In Scction 4, we compare the performance of
the proposcd motion descriptor with a conventional onc in
a shot retrieval experiments. Finally, Section 5 concludes
the paper.

2. Motion Texture

Non-parametric motion estimation can be carried out
at the difterent scales, cither pixel-based or block-based.
The former generates dense flow, while the latter gener-
ates sparse displacement pairs, which all can be looked
upon as a set of motion vectors. The motion vectors in a
frame is usually called motion vector field (MVF). In this
paper, we adopt the MVF in MPEG stream as approxi-
mate block-based motion estimation. The motion texture
is extracted from MVFs by two steps. First, we transform
MVF to a number of directional slices of energy. Then we
obtain a multi-dimensional vector, namely Motion Tex-
fure, by moments measuring.



In MVF, let (iy) be the position of macro blocks in
raster scan order, and V;;.(Ax;;, Ay;;} be the motion vector
of macro block MB,; . We define the energy En;; in macro
block MB,; as following: :

En, = "Ax."l +Ay], (1)

Since the pattemns in original MVF are not salient
enough, we map the energy in MVF to a unit circle. As
shown in Figure 1, we construct rectangular coordinates at
the center of MVF, and polar coordinates at the center of
unit circle. The width and height of MVF are 2w and 2h
respectively. If let x;;and y;; denote the position of macro
block MB;; in rectangular coordinates, the process of
mapping the energy in a MVF to a unit circle can be de-
fined as:

ow e - [ pP= ;,,
slo6)= £ % En, if ﬁo: e, 2)

where g(p.0) is the energy distribution function of unit
circle, F,_,=,'x_3+)~j,/Jw"h’ is thc normmalized distance

from macro block MB;; to the center of MVF, and a;; € [0,
2x] is the orientation of motion vector V;;. We call this
mapping process Circular Mapping, and call the mapped
unit circle Energy -Unit Circle (EUC). In EUC, both object
motion and camera motion present distinctive patterns.

Y N A
.y

a, 2

S )

—_— w T te) o m —
Figure 2. Examples of EUC.

Figure 2 gives some examples of EUC. (a) Camera
‘panning right. There is a light line on the left. (b) Camera
tracking. There are two light strips. The one extending to
ithe brim of EUC results from the camera motion and the
‘other with shorter length results from object motion. (c)
Camera zooming. It presents a special pattern. (d) Iregu-
dlar object motion with camera being static or moving
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slightly. (e) Object motion with specific pattern, moving
along the orientation of w4. (f) A special case, a cube
turning around. Its pattern is very distinctive.

In order to capture the temporal pattem of motion
during a period of time, we extract slices from the succes-
sive EUCs along temporal axis. As shown in Figure 3.
we first divide EUC into n (n=4 in this paper) equiangular
opposite sectors with the central lines at 0, /4, /2 and
3w/4. Then the energy in each sector is accumulated to the
central lines along homocentric circumference. Finally,
we extract directional slices from EUC volume at those

@ ™
Figure 3. Directional slicing
g e e e

' 2 82e .S} 5 SISS. S6_ST. ]
Figure 4. Directional slices samples from a seg-
ment of basketball game video

b S1

A segment of directional slices extracted from Bas-
ketball.mpg is shown in Figure 4, which has total 7 shots,
S1~S7. The horizontal coordinate is temporal axis, and
the venical coordinate indicates the distance from macro
block to the center of MVF. Shot-1 is a bout of offence
with a shoot occurred (right court); In Shot-2, 5, and 7,
camecra is tracking a player. The energy evenly distributes
among the 4 slices due to the irregular object motion;
Shot-3 is another bout of offence with a shoot occurred
(left count); Shot4 is a specific wipe; and Shot-6 is also a
bout of offence, but without shoot. In each slice, the
positive and negative values of vertical coordinate denote
the two opposite directions respectively, so 4 directional
slices are able to describe the patterns in 8 directions. In



this way, motion intensity, dominant direction. and- mo-
tion pattern all can be presented on a few gray-level im-
ages via the spatial and temporal distribution of energy.
The operations above reveal salient motion patterns
from MVF. In order to obtain a compact and quantified
representation, an effective measure of slice images is
also required. According to Hu's Uniqueness Theorem
[9]. if a function flx.y) is piecewise continues and has
non-zero values only in the finite region of the (x,y) plane,
then the moments of all orders exist. It can be shown that
the moment set {m,,} is uniquely determined by fix.y) and
conversely, fix,y) is uniquely determined by {m,,}. There-
fore, if we describe the directional slices with energy
density functions f,(x,y), the moments can be employed 1o
measure these slices. Since the directional slice images
Jfa{x,y) have finite area and, in the worst case, are picce-
wisc continues, moments of all orders exist and a moment
set will uniquely describe the information contained in
them. In this paper, we select a sub set of moments from
the zeroth to the fourth order to characterize slices. As-
suming the slice images have the size of Mx¥N, the mo-

ments can be computed by (3)
N-tM-1

My =2, 2 X"y f(x.y) 3)

v=0 1=0

where (p,g) = ((0,0). (1,0), (0.1), (2,0), (0.2), (3,0), (0,3),
(4,0), (0.4)}. Based on thesc moments, we compute 9
values with specific physical meanings, including mass
(mm). the center of mass (4). the radii of gyrations (6).
skewness (8) and kurtosis (9). Among them, the center of
mass and the radii of gyrations need the normalization by
the size of slices (5) (7).

com, =" com =Tm @)
x ™

com, =M. zom - EOM. 5
M N

ROG, = ’ﬂﬂ ROG, = |7 ©

mll) d m.

—— ROG

ROG, = BOG; ROG, =— )
M Y

Sk, =L sk, = Lo ®

w 02"
K =ln_3 g =By @
Hx Ha:

In (8X9), the central moment pq arc computed by
(10): -
N-lM-)
Hp=3 3 (x-COM Y (v-com J f(x.y) (10)
v=0 120
where (p.¢) = [(2.0). (0.2), (3,0), (0.3). (4.0), (0.4)}. In
order to characterize the motion's convergence or diver-
gence relative to FOE, a signed energy is defined for each
macro block MB, ;: '
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SE"'-I =4 L qaw _ﬁi-l| <_%) an
Il—l otherwise

where a;; still denotes the orientation of motion vector V;,
and f,, is the direction angle of the macro block MB,; in
MVF, as shown in Figure | (a). The signed energy is also
transformed to the directional slices by circular mapping
and directional slicing. Then we compute the average
signed energy in each directional slice by (12).
| B

SEn= Y'Y SEn
T LA (12)

N =00

With nine energy distribution measures and one addi-
tional signed energy measure of each directional slice, a
10xD dimensions vector: T=(7%, T', T". ..., 7%} is ob-
tained, where T" = (mq", COM. . COM. , ROG, , ROG, .
Sk, Sk K., K,". SEn"} and n€[0. D-1]. We name this
vector Motion Texture, by which all of motion character-
istics in video clip can be represented compactly and
effectively. Since D=4 in this paper. we obtain a 40-
dimentional vector.

3. Similarity Measurement

To apply a descriptor in matching, the similarity also
should be formulated. In this section, we define a similar-
ity measure for motion texture. Since the dynamic range
of each component of motion texture is quit different, the
normalization is indispensable when we compare two
motion texture vectors. Assuming we have a video clip
database, the motion texture is extracted from each clip.
Then we normalize cach component of vectors by the
inverse of the standard variance. The standard variance of
k" component is

g, = |2’ =RT] (13)
L
where v denotes the k™ component of the [* feature

vector, L is the number of samples in database, and V, is
the mean of v,”, which is computed as

A= zI'.nl v,'(’)

WET (14)

By using the normalization cocfficients as weights,
we adopt weighted Euclidean distance to measure the
similarity of motion texture. When comparing two motion
texture vectors 7° and 7" in video clip database, the simi-
larity is defined as following:

0% 2
Sim (T’ .T")= Z —T(V: - v{') - (15)
) =1 0,

In this way, the modality-dependent amplitude differ-
ence is reduced effectively. The effectiveness of this simi-
larity measurement has been verified by our experiments.



4. Experiments

We evaluated the proposed representation and simi-
larity measure on a motion-based shot retrieval system.
A test video database were built with about 10 hours’
real-world videos, including documentary, sports and
news. These videos were segmented into shots by an
automatic algorithm. Conscguently, there are 10000 shots
in the test video databasc. For comparison purpose, we
also implement a conventional method based on motion
intensity and dominate directions. From each shot, the
motion features used in the two methods are extracted.
According to the similar motion patterns, we manually
classify the shots in video database into 54 classes off-
line. First, we discriminate shots with some pattems from
the ones without any salient motion pattern. The latter is
quantified into 5 levels, 0~4, based on motion intensity.
On the other hand, the shots with patterns are classified
into 16 classes of camera pattern and 43 classes of object
pattern. The number of camera pattem classes is fixed,
such as panning left/right, zooming-infout, etc. The num-
ber of object pattern classes is variable, since the motion
pattems of the objects in real world can not be totally
enumerated. For example, diving, high jumping, shooting,
etc. are all have their own motion paitern. Then 14
classes with enough elements (>200 shots) are selected as
our test set, including 4 classes of non-pattern (NP), 8
classes of object pattern (OP), and 2 classes of camera
pattern (CP). In cach class, one of members is picked out
as query sample in turn, and the rest members are used as
ground truth. The performance is evaluated by average
normalized modified retrieval rank (ANMRR) and aver-
age retrieval rank (ARR), which were proposed in [10].
The experimental results are listed in Table 1. The lower
the ANMRR value is, the better the performance of re-
trieval 1s. Contrarily, the higher the ARR value. the better
the performance.

Query Conventional Motion Texture
Method based Method
ANMRR | ARR ANMRR ARR
NP-1 0.6765 0.4998 0.5333 0.6065
NP-2 0.6603 0.4982 0.5011 0.6754
NP-3 0.6499 04371 0.5027 0.6508
NP-4 0.6598 0.4009 0.5249 06192
OP-1 0.4867 0.5865 0.2325 08154
oP-2 0.3944 0.7011 0.1305 0.8745
OP-3 0.3293 0.6581 0.0992 0.9046
OP-4 0.3943 0.6402 0.1375 0.8959
OP-5 04149 0.6749 0.2043 0.8076
OP-6 0.5061 0.6574 0.1214 0.8832
or-7 0.2012 0.7625 0.0000 1.0000
op-8 0.2835 0.8081 0.0000 1.0000
CP-1 0.1628 0.7963 0.0825 1.0000
CP-2 0.2037 0.8755 0.0933 1.0000
Avg. 0.4302 0.6426 0.2259 0.8380

Table 1. Performance Evaluation
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Table 1 shows that the motion texture based method
always outperforms the conventional method, especially
for the shots with salient object motion patterns. Since the
camera motions arc very distinctive, they can be identified
by both mcthods easily. In the case of shots without sali-
ent patterns, namely non-pattern, the improvement by the
proposed method is limited, because only motion intensity
and dominant direction are contributing. When motion
texture is extracted from the MVF in MPGE stream, the
speed of extraction can be much faster than real-time.

5. Conclusions

In this paper, we have presented a generic motion
representation, Motion Texture. Most of motion character-
istics, such as motion intensity, dominant dircctions, spa-
tial and temporal motion pattems, can be fully character-
ized in this representation. The experimental results indi-
cate that Motion Texture is very effective and efficient for
motion patten based shot retrieval. Also, Motion Texture
can be used in other motion related applications, such as
video classification, event detection, and surveillance,
etc., which are our future work.
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Abstract

This paper proposes a compressed domain video water-
marking scheme for copyright protection. Our scheme is
designed based on the concept of communications with side
information. For making the real-time detection a reality.
the watermark is directly embedded and detected in the VLC
domain. The typical problems of video watermarking such
as preservation of bit rate, video attacks, real-time detection
will be examined. The performance of the new watermarking
scheme will be examined by checking its robustness capa-
bility against artacks together with false positive analysis.

1 Introduction

Watermarking has received much attention due to the
popularity of data communication through the Intemet.
Among various media data, digital video is the one that
carries the most amount of data. Hence, it is not easy and
realistic to embed/detect watermarks directly in a raw video
[6] in real time. Usually, a raw video has 1q be compressed
first and then watermarked before it is transmitted through
the network. However, the major concern is how to design a
feasible compressed video watermarking scheme such that
the hidden watermarks could be detected in real time.

In the literature, only a few compressed video watermark-
ing schemes were proposed (2, 3, 5]. In [2], the header/side
information and motion vectors of an MPEG2 bitstream are
not changed during watermarking. They arranged a water-
mark sequence to be two-dimensional and has the same size
witha video frame. Then, the watermark signalis 8 x 8 DCT
transformed and added into the DCT coefficients of a video
stream. In other words, their compressed domain video wa-
termarkingis, in fact, performed in the DCT domain. There-
fore. some preprocessing operations such as inverse entropy
coding and inverse quantization are required. Besides, no
attacks were tested in their experiments. In [3), Langelaar
et al. proposed a video watermarking scheme performed in
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the compressed domain based on VLC codewords. At first,
they divided run-level pairs into many groups with the same
VLC codeword length under the constraint that the level
difference in each group should be exactly one. Duning wa-
termark embedding, a run-level pair was either unchanged
or replaced depending on the incoming watermark value.
Their method was basically a least significant bit (LSB)-type
method. Recently, Langelaar er al. proposed a differential
energy watermarking (DEW) algonithm [3] performed in the
DCT domain. DEW means that watermark bits are inserted
by removing the high-frequency DCT coefficients. The au-
thors claimed that it is not possible to remove the DEW
watermark without causing perceptual degradation.

From the above review, we know that a robust real-time
video watermarking scheme which can be operated in the
compressed domain is really necessary. In this work, we
shall propose a solution to achieve the above goal. In order
to make the proposed scheme more accurate and efficient,
we shall put some major issues into consideration. First, the
concept of viewing watermarking as communication with
side information [1] will be adopted. Based on this concept,
a new compressed video watermarking scheme is proposed.
Our scheme will fully utilize the prior knowledge of a cover
data such that the requirement of blind detection can be
achieved by estimating the cover data from a suspect data.

2 The  Communications with Side
Information-based Watermarking Scheme

In this paper, the proposed video watermarking scheme
is extended from [4), which was proposed for block-based
spatial-domain image watermarking. Since a video is com-
posed of a large number of frames and each frame is in fact
an image, we shall start the discussion by talking about how
to embed watermarks in an image.

2.1 Embedding Watermarks in Images

Let I be a cover image (or a frame of a video) with pixel
values z(7) (1 < 7 < N x M), where V x M is the image's



size. The cover image is mean filtered o generate a new set
of pixel values (7). Let the difference between an original
pixel z(1) and its corresponding mean filtered pixel Z(7) in
ablock b be

d@) = z(i) — z(a). m
In the following, i indicates the pixel’s index in a block.
These d(2) values will be normalized into a Gaussian distri-
bution with zero mean and unit variance, i.c.,

daliy = T =F - @

-0

where p and o are, respectively, the mean and the standard
deviation of d(7). To conceal a watermark like a commu-
nication process carrying side information {1], we replace
de (1) by w(i) and get the modified d(z) as

dP(i) = w(i) - o + p. 3)
Hence, a pixel value z(1) is modulated as
(i) = 2(i) + d"() = 2() +w(@) o + . ()
In order to preserve certain fidelity, the modulation operation
might be modified‘as follows:
(i) = (i) + (w(i) - A+ dg(i) - (1= A)) -0 + g1, (5)

where ) is a weight used to adjust the compromise between
robustness and fidelity.

22 Detecting Watermarks from Images

In the detection process, suppose A = 1 and let a water-
marked (but not attacked) image be first mean filtered. The
mean filtered pixel value can be approximated by

by xby

el o @0 +ul) o+ u) ~ 26), ©)
t=1

) =

based on the characteristic of mean filtering (with window
size b; x b;). From Eq. (6), the exiracted signal s¢ can be
derived as follows:

s€(i) = 2" (i) — 22 (0) = w(i) - 0 + . )

The extracted signal s°(i) is equal to the d" (i) value in Eq.
(3). This implies that the hidden watermark w could be
perfectly recovered and explains why mean filtering is used.

3 Compressed Domain Video Watermarking
3.1 Video Watermark Embedding Process

3.1.1 Selection of Suitable Data

In the video decoding stage, a video bitstream is usually
decoded into codewords by VLC decoding. Every codeword
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corresponds to a run-level pair denoted as (r,{). For a given
run-level pair (r, 1), the value of r indicates the positions of
aset of DCT coefficients in a zigzag-scan order. In addition,
the value of { represents the magnitude of a DCT coefficient
only. More specifically, run (r) represents the number of
DCT coefficients with magnitude zero preceding the current
run-level pair and level (I) corresponds to the quantization
value of the current DCT coefficient. If the run value (r) of a
codeword has been changed, then the frequency in a zigzag-
scan order is also significantly changed. In other words,
the image would be distorted significantly because a great
number of DCT coefficients have been forced to change.
On the other hand, if a level value ({) is changed, then only
one DCT coefficient will be changed. It will not affect other
frequency components. Therefore, we understand that it is
much easier to preserve the fidelity of a video by modifying
the level values (/). Based on the above reasons, we have
chosen to embed watermarks by modulating level values (1)
instead of run values (7).

3.1.2 Selection of Suitable Position

We consider what kind of GOP structure in a compressed
bitstream is suitable for watermarking. Basically, a GOP
structure is composed of three kinds of frames: “I”, “P”,
and “B.” Owing to the data amount of the “B” and “P”
frames are relatively fewer than that of the “I"” frame and
the reconstruction of “B” and “P”’ frames depends on the “T”
frame, it is enough to embed watermarks on “I” frames only
since the other non-"I” frames will inherit watermarks after
decoding. )

Since the size of a video bitstream is subject to change at
different compression ratios, the number of run-level pairs
will also be changed. This will cause the asynchronization
problem in watermark detection. In order to tackle this
problem, we propose to conceal a watermark value into a
macroblock (MB) because the number of macroblocks is
invariant to different attacks including video compressions.
In addition, one watermark is inserted into the Y component
of an I-frame so that the problem due to different sampling
(Y : Cb : Cr) can be avoided. In this paper, the length of
a hidden watermark is equal to the number of macroblocks.
This implies that one watermark bit will be embedded into
a macroblock.

3.1.3 Embedding of a Watermark

Suppose there are in total N macroblocks in a video bit-
stream. Let (ri;,lij) be the j-th run-level pair in the i-th
macroblock, u(i) be the mean of the levels, and ni; be the
number of levels in the i-th macroblock. Under these cir-
cumsltances, the mean values u(i) (1 <7 < N) will form
a 1-D sequence. Let i(z) be the mean filtered value ob-
tained from u(i). According to Eq. (1), we can obtain



d(i) = u(2) — i(#) with g and o being the mean and the
standard deviation, respectively. Next, these d(i) values
can be normalized into dg(i) as in Eq. (2). Then, a wa-
termark sequence w = {w(1),w(2),...,w(N)} to be hid-
den is generated by a secret key. Every watermark value
w(t) (1 <1 < N) is embedded into a macroblock by re-
placing its corresponding d¢ (z) value, as Eq. (3) indicates.

So far, watermarking is actually not finished because
only the quantity d® (i) — d(i), used to modulate the mean
of level values, is obtained in a macroblock. We still need to
modulate every run-level pair in a macroblock. In this paper,
we propose 10 propagate the modulation quantity d®(i) —
d(i) 1o all levels of the run-level pairs of a macroblock.
That is, the original run-level pair (7. [;;) is modulated as
(rig %) for1 < j <mjand1 < i < N, wherelf; =
L;; + (d" (1) = d(i)). The reason behind this is that based on
the use of mean filtering, itis easy to preserve the modulation
quantity of each level value 10 be the same as that of their
mean. This result facilitates the use of mean filtering for
watermark embedding and detection. This implies that we
have changed from macroblock-based modulation to level-
based modulation and the watermarking operation is now
actually accomplished. ’

In the process of compressed video watermarking, mod-
ulations of level values, in fact, correspond to modifications
of quantization values obtained by applying a quantization
table 1o the DCT coefficients. In order to maintain the fi-
delity of a watermarked video, it is necessary to modulate the
corresponding DCT coefficient by at most one quantization
value. On the other hand, in order to achieve the purpose
of watermarking it requires to modulate the corresponding
DCT coefficient by at least one quantization value. There-
fore, the modulation quantity |d* (i) — d(7)| should satisfy
the constraint:

ld*G) — d(3)] = 1 = {(w(i) — da(@)) -0+ ul.  (®)
A

where 1 means onc unit of a level value or a quantization
value. From this constraint, we can further derive the em-
bedded watermark value, w(z), as

e [ deli) + £, ifw(i) 2 0.
i) = {d(,-(i)—‘—',ﬁ: ifw(i) <o, &

in order to guarantee the same sign between w(z) and w(z).
The above mentioned modification is necessary because if
dc (i) is completely replaced by w(z), then DCT coefficients
will be significantly modified and thus causes sensible vi-
sual defects. As a consequence, the watermark modulation
strategy specified in Eq. (3) is used under the constraint
that Eq. (9) holds (no longer depends on A in Eq. (5)).
This constraint guarantees the fidelity of a video. Under the
above paradigm, the modified d(i) value is obtained by -

d"(i) = w(i) - o + p. (10)
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which is slightly different from Eq. (3). Accordingly, the
u(i) value will be modulated as

ul (@) = (i) + 4 (7). (11)

It is noted that the insertion of we(1) instead of w(1) will
play a trade-off role between robustness and transparency.
During the video watermarking in the VLC domain, we
have found some problems that should be particularly ad-
dressed: (i) If (ry;, l{'j) does notexist in the VLC codewords.
then it will create the video coding and decoding problem. In
order to avoid this problem, the modulated (r;;, If%) should
be enforced to stay with the value of its closest run-level
pair in the VLC codewords. (i) If the difference between
the original level value and its corresponding modulated
level value is large enough, the fidelity of a video would be
hard to be preserved. Therefore, we have chosen to maintain
the original run-level pair unchanged. On the other hand, if
the modulated tevel { f‘l is less than or equal 1o zero, then it is
set to be 1 in order to maintain the correctness of decoding.

3.1.4 Problems in the Compressed Domain Water-
marking

When watermarking is directly performed in the compressed
video domain, some problems may occur. First, we should
deal with the increase of bit-rate (BR) problem. In a com-
pressed video sequence, the size of a bitstream is not al-
lowed to increase after watermarking. Therefore, a trick is
proposed to deal with this problem. We first check the total
amount of size reduction by embedding negative watermark
bits. Then, the total amount of size increased by embedding
positive watermark bits must be controlled to be smaller than
the amount of size reduction.

Secondly, our method embeds watermarks without con-
sidering the information of motion vectors because modu-
lating motion vectors will incur significant perceptual mod-
ifications. However, even motion vectors are unchanged,
the quality of a video will still be affected. This is because
the subsequent frames are reconstructed based on referring
a previously watermarked I-frame. In order to deal with this
problem, we have cxtensively conducted a set of experiments
and have found that all transparency degradations were oc-
curred at the I-frames. However, when a video sequence is
normally played, these degradations won’t be sensed eas-
ily. Therefore, we won’t spend extra energy to take care of
this problem because it may increase the complexity of our
designed algorithm.

3.2 Video Watermal;k Detection Process

3.2.1 Detection of the Watermark

From a suspect video, we first calculate its mean level values
and mean filtered level values of macroblocks as u®(i) and



a%(1) (for 1 < 7 < N), respectively. In fact, the values,
4°(1), are the estimated cover video. Then, the extracted
watermark values could be determined as

w® (i) = sign(u®(i) - a°(i)), a2
which is basically an inverse operation of Eq. (11). The
output of sign functionis +1/ — 1 if its argument is pos-
itive/negative. Finally, a normalized correlation value, de-
rived by checking the relation between the original water-
mark w(i) and the extracted watermark w®(i), is used 10
indicate the presence/absence of a hidden watermark if it is
larger/smaller than a threshold.

4 Experimental Results

In our experiments, the video sequence. Flower-Garden,
compressed at 15 Mbit/s was used. The frame size was
704 x 576. In average, the PSNR of the watermarked video
was higher than 36dB. The original video and the water-
marked video were visually indistinguishable. Some com-
mon attacks, including MPEG compression with bit rates of
G6M bps, 4M and 2M bps, additive noise adding (27.05dB),
sharpening, frame averaging, frame rate changing, mean fil-
tering, and I-frame dropping+compression, were used for
robustness test. Based on the obtained results, the threshold
was determined as 0.137(0.150) if the desired false positive
probability was 1076(10~7). Fig. 1 shows the comela-
tion value with respect to each I-frame in some attacked
videos and non-watermarked vidcos. It is noted that the cor-
relation values detected from those watermarked/attacked
video were casily separated from those detected from non-
watermarked videos. This implies that both the false nega-
tive and the false positive probabilities derived by applying
our method are low. Besides, special video attacks including
collusion attacks and copy attacks have also been tested. Re-
sults have shown that our method is robust against collusion
attacks but fragile to copy attacks if the added watermark
is strong. As for time complexity, video decoding process
spent 182 seconds but the watermark detection used 12 sec~
onds, which implies that the detection time is negligible.

5 Conclusion

In this paper, we have demonstrated how robust video wa-
termarking could be done in the VLC domain. Our method
has been verified by many video attacks together with false
positive analysis. From the current results, we have found
that the correlation value detected from a watermarked (but
not attacked) video is not extremely high. This is because
there are about 20% ~ 30% macroblocks having near zero
level values (corresponding to DCT coefficients after inverse
quantization). If the embedding process is conducted on
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Figure 1. Watermark detection results.

some small DCT coefficients, then the watermarked video
won't be robust. Therefore, our future work will focus
on improving the robustness by embedding watermarks on
some strictly selected run-level pairs.
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Abstract

In this paper, a new approach is proposed for single
view based plane metrology. The approach is based on a
pair of vanishing points from two orthogonal sels of space
parallel lines. Extensive experiments on simulated data as
well as on real images showed that our new approach can
achieve as good result as that of the homography based
one which is widely used in the literature, but our new
approach do not need any explicit specifications of space
control points. Since in many real applications.
particularly, in indoor environment, orthogonal lines are
not rare, for example. a frame of window or a door, our
new approach is of widely applicable.

1. Introduction

One of the main aims of Computer Vision is to take
measurements of the environment and reconstruct its 3D
model. The problem of using vision to measure world
distance has attracted a lot of attention and received wide
applications in recent years[1], such as architectural and
indoor measurement, reconstruction from paintings,
forensic measurement and traffic accident investigation.
Traditional approach to measuring is \to take all the
distances manually by using metric tapes or rulers. This
approach is time consuming, prone to errors and invasive.
By computer vision based method, what one needs to do
is only to take several pictures, then all measurements can
be taken offline with more accuracy, flexibility and
efficiency. In recent years, many researchers have been
working on the problem and proposed some useful
methods and algorithms[1~6].

Generally speaking, the methods in the literature may
be divided into two categories. The classical one is to
reconstruct the metric structure of the scene from 2 or
more images taken from different point of view using
stereo vision technique[1,5~6]. This is a hard task because
it fundamentally involves solving the correspondence and
camera calibration problems, and also, the method may
subject to a loss of accuracy due to error propagation
along the computation chain.
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The other one is to directly use one uncalibrated
image[1~3]. Only one view does not provide enough
information for a complete 3D reconstruction. However
some metrical quantities can be retrieved from the
knowledge of some geometrical information such as the
relative position of points, lines and planes in the scene.
The methods in this category have been proved that they
are easy to use and with equal accuracy. In[l,2], a
homography based approach to calculate the Euclidean
distance of two points on a world plane, as well as the
uncertainty analysis of measurement was proposed. By
using this method, at least the coordinates of four control
points on the world plane and their corresponding image
points should be known beforehand. [t is obvious that the
accuracy of this method largely depends on that of the
control points measurements. But in some cases, it is
really hard to obtain an accurate measurement of the key
points on world plane. In[1), the authors described another
approach to compute 3D affine measurement from a
single perspective image. It is assumed that the vanishing
line of a reference plane in the scene as well as a
vanishing point in a reference direction (not parallel to the
plane) maybe determined from the image, then three
canonical type of measurements can be computed.

In this paper, we mainly focus on single view based
plane metrology and propose a novel approach named
vanishing points based method. In addition, a comparative
study of the new methods, together with the homography
based one, is carried out. The paper is organized as
follows. In section 2, some preliminaries on homography
and vanishing point are briefed. Then the novel method is
elaborated in section 3. In section 4 and S, the two
methods are compared experimentally both on simulated
data and real image. Some conclusions are given at the
end of this paper.

2. Some preliminaries
2.1. Plane to plane homography
From perspective projection, a 3D point X in space is

projected to an image point m via a 3x4 projection
matrix P as



s =PX =[p,,p,ps.p.J% O]
where, m and X are homogeneous coordinates in the
form of m=(uv,w) , X=(X.Y¥,ZW) , and s is a
nonzero scalar. For 3D coplanar points, without loss of
generality, we assume Z =0, then

;/‘ X hll hll h'ﬂﬂ ’Y

s\ =Pl [=lepap) ¥ |t By iY@
et 4
W, W H- W by by by [V

Therefore, a 3D coplanar point and its corresponding
image point can be related by the so-called plane to plane
homography H=[p,,p,.p,] . A homography H is
described by a 3x3 non-singular matrix, with 8 degrees
of freedom, because it can only be defined meaningfully
up to a scale factor. According to equation (2), each image
to world point correspondence can give two linear
constraints to the 9 elements of homography, thus, given
N (N=4) space coplanar points and their correspondences
in image, the homagraphy matrix can be uniquely
calculated. If N>4, the matrix is over determined. For
non-perfect data, H can be estimated by a suitable
minimization scheme[1,7]. Finally, if we know the
homography between the world and image plane, then an

image point can be back-mapped into world point via H™'.

Depending on the conditions arising from different
situations, the homography can also be estimated in
different ways so as to increase its accuracy. For example,
if we know a space line L and its corresponding image 1
under projective projection, then we have sI=HL ,
which can also provide two constraints on homography H .
So given at least 4 correspondences from coplanar space
lines to image lines, the homography can also be
computed.

Vanishing Vanishing
__point line point

Fig.1 Vanishing point and Vanishing line

2.2. Vanishing point and vanishing line

‘Under perspective projection, parallel lines in 3D
space project to converging lines in the image plane
whose intersection, possibly located at infinity, is called
vanishing point. Different sets of parallel lines on the
same space plane define different vanishing points, all
‘these vanishing points lic on the same line named
vanishing line as shown in Fig.l. Vanishing points and
svanishing lines convey a lot of information about direction

557

of lines and orientation of planes in space, these entities
can be estimated directly from images and no explicit
knowledge of the relative geometry between camera and
viewed scene is required. There are many methods for
detection and calculation of vanishing points and
vanishing lines in the literature[8,9]. If more than two
lines arc available, then a Maximum Likelihood
Estimation algorithm (MLE) or least squares technique
can be employed to estimate the vanishing point[1].

3. Vanishing points based distance measuring

In this section, we will describe an algebraic approach
for distance measuring based on vanishing points. 1f we
can obtain an image of two orthogonal sets of parallel
coplanar space lines and the length of two unparallel line
segments in the plane which is called reference plane, then
we can uniquely determine the metric distance between
any two points on the reference plane.

Define a space coordinate system XYZ , and let the
origin of the coordinate frame lie on the reference plane,
with X and Y axes parallel 10 the two sets of parallel
lines respectively. Denote the vanishing points of the
parallel lines in X and Y directions as v, and v,
respectively, it is clear that vy =5,p,, v, =5,p, and the
vanishing line v, =v,xv, , where, s, and s, are
nonzero scales. As shown in section 2.1, there exists a
homography between the reference plane and the image.
So we can select the first two column of H as v, and
v, . The homography should be of rank three, otherwise,
the mapping from reference plane to image is degenerate.
Therefore, the final column of H must not lie on the
vanishing line. We can select the last column h; as any
vector that is linearly independent to v, and v, , such as
hy=v, Through the constructed homography
H=[v,,v,,h;], an image point m can be mapped to a
point X, in an affine space, we call it H space in the
following.

Proposition 1: The distance between any two points in
the Euclidean space and the corresponding distance in H
space are equal up to two common scales.

Proof: From equation (2) and the above analysis, we have

{ﬁ=p.l’o?=p.(p..ppp‘]i @
ﬁ =p2“;n = pzlslpl-szpzah;]i"
where, m , X and X, are in normalized homogeneous
form with m = (u,v, 1), X=(X,Y. )", X, =(X,.%.0" .
P, =(p.-p,,p.] and p,, p, are nonzero scales. Eliminate
m and expand the above equation, we have

X= &P;lﬂin = %"—[D..P:.P.l"lsnp.-S:P:J'-lin

5 0 a fx,7 [4 0 &7x, “
=L s a || Yy |[=|0 A4 k|| Y, = AX,
Pilo 0 a0 00 i1
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A=ps/ps h=ps[o k=palp. k=palp
and p,a,/p, =1. We can learn from equation (4) that 4,,

where, a,

A, are independent of any correspondence of X and X, .
Thus, a point in the Euclidean space and its corresponding
point in H space are related with an affine transformation
A . For two points X, and X, in the Euclidean space and
their corresponding points X, and X, in H space

AX k| (4K +k 48X,
X, =X, =| LYy thy =l AV, +ky =] 488, | (5)
1 1 0

Therefore, the distance between any two points in the
Euclidean space is a function of the two common scales
(4,.4,) and the coordinates difference of the computed
two points in H space. If we know two unparallel
reference line segments and their length d, and d,, then
following equations hold:

dl =X aX}, +A34Y,,
d} = 22aX2, + av2,
After the recovery of 4, and 4,, we can immediately

obuain all the metric distance between any two points in
the reference plane according to the following equation.

d= ,/Afu}, +AAY} N

Some remarks:

(6)

(i) In equation (4), the last column of A means a
translation between the origin of the affine coordinate
system and that of the Euclidean coordinate system, while
A and 4, mean the two scalings between the X and Y
axes of the two coordinate systems.

(ii) If each set of parallel lines are composed of two

lines, then the two sets of orthogonal parallel lines form a
rectangle. In this case, we have the follov"ving proposition.
Propesition 2: The ratio of 4, and 4, is equal to that of
the rectangle’s two sides.
Proof: Without loss of generality, we can denote the
coordinates of intersections and the image of the rectangle
as shown in Fig.2. Assume all the points in Fig.2 are in
homogeneous coordinates, then we have

o=uP,0, a=u,PA
b =ﬂ;P., B. Czﬂ‘P"C
where, ,, u,,4,,4, are nonzero scales. Vanishing
points v, and v, can be computed from the image as
follows.
v, =(oxa)x(bxc)=puu,upu (P,OXP,A)x(P,BxP,C)
=/’|/‘1”3”0,P"| P,(0xA)x(BxC) :ﬂlﬂlﬂiﬂlaqu“,pl =rp
vy =(oxc)x(axb) =y u,p1,1,(P,OXP,C) X (P,A XP,B)
= B[R |P(OX O X (A X BY = 11yt 41,05 B[y = ¥ 1,

(8)
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where, y, =ﬂ|#1/‘1/‘4‘7)blpo' » V2 =;1,,u:;1,u,ab’|l’o] » By
and p, are the first and second column of P, respectively.
Therefore, from the above equations and equation (5), it is
easy (o sec that the ratio of A, and 4, is equal to that of
the two sides of the rectangle. i.e.
A:d=ab 9
(iii) If the two sets of parallel lines form a square, then
we have 4, =4,. In this case, the distance between any
two points in the Euclidean space and the comresponding
distance in H space are equal up to one common scale,
and one reference distance is enough to determine the
scale. 2

A Y Yy

C(0,b,1){B (ab,1)

X,
01(0,0,1) A(a0,1) o ¥

Fig.2 Two sets of parallel lines and their image

4. Experiments with simulated data

In this section, a comparative study of the proposed
method as well as the homography based method is done
via extensive simulations. In our simulations, the camera’s
setup is: f, =1200 , £, =1000, a=1, uy=512,
v, =384 . The image resolution is: 1024x 768 pixels. The
extrinsic camera parameters are: rotation axes r =(2,1,4]",
rotation angle a = /6 and translation T =[~5-10,800]" .
We generate a rectangle in the reference space plane and
evenly select 100 points on each side of the rectangle. The
gaussian image noise (unit: pixel) is added on each image
point, and the 100 image points on each side are fitted to a
line via a least-square algorithm. In order to ensure the
comparability of the two methods, all tests are taken under
same camera parameters and simulation data.

For homography based method, first, we calculate the
four comers of the generated rectangle by computing the
intersections of the four fitted side lines and use these
points to calculate the homography between the reference
plane and image plane. Then an image point can be
mapped to the Euclidean space via formula x=H'm and
the distance between two space points can be determined.

For the proposed vanishing points based method, we
take the rectangle as two sets of orthogonal parallel lines
and take two unparallel line segments as the reference
lengths so as to determine the two scales.

[n order to provide more statistically meaningful
results, we vary the added Gaussian nois¢ from 0 o 5
pixels with a step of 0.1 pixel during the test. At each



noise level, we randomly select 200 pairs of space points
and use their corresponding image points to estimate their
metric distances by the two methods respectively. The
result is shown in Fig.3. and Fig.4. In each figure, the left.
one is the relative error of the estimated distance at
different noise level, while the right one shows their
corresponding standard deviations.
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Fig.3 Test resuit of homography based method
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Fig.4 Test result of vanishing point based method
5. Experiments with real images

In real image test, images are taken by a digital CCD
camera with resolution of 1024 x 768, then the canny edge
detector and a least-squares technique are used to detect
the edge points of the parallel lines and fit them into lines.
Fig.5 shows two images of the test set.

-
S
o L

Fig.5 Two images of the test data

In order to detect the two orthogonal parallel lines as
well as the control points and vanishing points
automatically, we add a rectangle template to the scene.
For homography based method, the metric measurements
of the rectangle should be taken beforehand so as to
calculate the homography. For vanishing points based
algorithm, we just need to know two or one (for square
case) unparallel reference lengths, which are not too
demanding. Table I gives some comparative results of the
test. in Table 1, HM stands for homography based method,
VP for vanishing point based one, Dy for real distance, D¢
for estimated distance and E, for relative error.

559

Table 1 Real image testresults  Unit cm

Line scgmenty S, S, Sy S Ss Se
Dg 60.05 | 84.85 |134.18) 53.65 | 53.65 |189.78
HM De | 59.44 | 85.50 [136.46]53.92 | 53.26 |191.02
E, 1.02 1077 | 1.7 0.5 | 0.73 | 0.65

vpP De |59.99 | 83.86 |131.76{ 54.05 | 53.38 |190.92
E, 0.1 117 § 1.8 {075 | 05 0.6

6. Conclusions

In this paper, we propose a novel approach for single
view based plane metrology. From the experiments with
both simulated data and real images, we can learn that the
method is of equal precision and robustness compared
with the homography based one. It is worth noting that the
method proposed here is easier to implement than others,
especially in cases where control points are difficult to
specify.

It is clear that the precision of this method depends
greatly on that of the line fitting and vanishing point
calculations. So, it is crucial to select a proper edge
detecting and line fitting technique so as to increase the
precision of distance measurements.
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