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Preface

Algebra is a mathematical shorthand for language, and matrices are a
shorthand for algebra. Consequently, a special value of matrices is that they
enable many mathematical operations, especially those arising in statistics
and the quantitative sciences, to be expressed concisely and with clarity. The
algebra of matrices is, of course, in no way new, but its presentation is often
so surrounded by the trappings of mathematical generality that assimilation
can be difficult for readers who have only limited ability or training in
mathematics. Yet many such people nowadays find a knowledge of matrix
algebra necessary for their work, especially where statistics and /or com-
puters are involved. It is to these people that I address this book; and for
them, I have attempted to keep the mathematical presentation as informal
as possible.

The pursuit of knowledge frequently involves collecting data; and those
responsible for the collecting must appreciate the need for analyzing their
data to recover and interpret the information contained therein. Such people
must therefore understand some of the mathematical tools necessary for this
analysis, to an extent either that they can carry out their own analysis, or
that they can converse with statisticians and mathematicians whose help will
otherwise be needed. One of the necessary tools is matrix algebra. It is
becoming as necessary to science today as elementary calculus has been for
generations. Matrices originated in mathematics more than a century ago,
but their broad adaptation to science is relatively recent, prompted by the
widespread acceptance of statistical analysis of data, and of computers to do
that analysis; both statistics and computing rely heavily on matrix algebra.
The purpose of this book is therefore that of bringing to a broad spectrum
of readers a knowledge of matrix algebra that is useful in the statistical
analysis of data and in statistics generally.

The basic prerequisite for using the book is high school algebra. Differen-
tial calculus is used on only a few pages, which can easily be omitted;
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viii PREFACE

nothing will be lost insofar as a general understanding of matrix algebra is
concerned. Proofs and demonstrations of most of the theory are given, for
without them the presentation would be lifeless. But in every chapter the
theoretical development is profusely illustrated with elementary numerical
examples and with illustrations taken from a variety of applied sciences.
And the last three chapters are devoted solely to uses of matrix algebra in
statistics, with Chapters 14 and 15 outlining two of the most widely used
statistical techniques: regression and linear models.

The mainstream of the book is its first eleven chapters, beginning with
one on introductory concepts that includes a discussion of subscript and
summation notation. This is followed by four chapters dealing with basic
arithmetic, special matrices, determinants and inverses. Chapters 6 and 7 are
on rank and canonical forms, 8 and 9 deal with generalized inverses and
solving linear equations, 10 is a collection of results on partitioned matrices
and 11 describes eigenvalues and eigenvectors. Background theory for
Chapter 11 is collected in an appendix, Chapter 11A, some summaries and
miscellaneous topics make up Chapter 12, statistical illustrations constitute
Chapter 13, and Chapters 14 and 15 describe regression and linear models.
All chapters except the last two end with exercises.

Occasional sections and paragraphs can be omitted at a first reading,
especially by those whose experience in mathematics is somewhat limited.
These portions of the book are printed in small type and, generally
speaking, contain material subsidiary to the main flow of the text—material
that may be a little more advanced in mathematical presentation than the
general level otherwise maintained.

Chapters, and sections within chapters, are numbered with Arabic
numerals 1, 2, 3,.... Within-chapter references to sections are by section
number, but references across chapters use the decimal system; e.g., Section
1.3 is Section 3 of Chapter 1. These numbers are also shown in the running
head of each page; e.g., [1.3] is found on page 4. Numbered equations are
(1), (2),..., within each chapter. Those of one chapter are seldom referred
to in another, but when they are, the chapter reference is explicit; otherwise
“equation (3),” or more simply “(3),” means the equation numbered (3) in
the chapter concerned. Exercises are in un-numbered sections and are
referenced by their chapter number; e.g., Exercise 6.2 is Exercise 2 at the
end of Chapter 6.

I am greatly indebted to George P. H. Styan for his exquisitely thorough
readings of two drafts of the manuscript and his extensive and very helpful
array of comments. Harold V. Henderson’s numerous suggestions for the
final manuscript were equally as helpful. Readers of Matrix Algebra for the
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Biological Sciences (Wiley, 1966), and students in fifteen years of my matrix
algebra course at Cornell have also contributed many useful ideas. Particu-
lar thanks go to Mrs. Helen Seamon for her superb accuracy on the
typewriter, her patience and fantastic attention to detail; such attributes are
greatly appreciated.

Ithaca, New York SHAYLE R. SEARLE
May 1982
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