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Preface

This book 1s intended for mathematicians. Its origins lie 1n a course of
lectures given by an algebralst to a class which had just completed a sub-
stantial course on abstract algebra. Consequently, our treatment of the sub- )
Ject is algebraic. Although we assume a reasonable level of sophlstrcanon
in algebra, the text requrres little more than the basw notions of group, ring,,
module, etc A more detarled knowledge of algebra is required for some of
the exercises. We also assume a familiarity with the main ideas of set theory,
mcludmg cardinal’ numbers and Zorn's Lemma.

" In’ this book, we' carry out a mathematical study of the Ioglc used in
mathematics. We do this by constructing a mathematical model of logic and
applying mathematics to analyse the properties of the model. We therefore
regard all our existing knowledge of mathematics as being applicable to the
analysis of the model, and in particular we accept set theory as part of the
meta- language We are not’ attemptmg to construct a foundatlon on which
all mathematics is to be based—rather, any conclusions to be drawn about
the foundations’ of mathematics comeé only by analogy with the model, and
are to be regarded in much the same way as the conclusions drawn from
any scientific theory.

The constructron of our modél is greatly simplified by our using univer-
sal algebra in a way which enables us to dispense with the usual dlscussron .
of essentially notational questions about well-formed formulae All questlons
and constructions relating to the set of well-formed formulae are handled by’
our Theorems 2.2 and 4.3 of Chapter 1. Our use of universal algebra also
provides us with a convenient method for discussing free variables (and
avoiding reference to bound wariables), and it also permits a simple neat
statement of the Substitution Theorem (Theorems 4.11 of Chapter II and
4.3 of Chapter 1IV).

Chapter I develops the necessary amount of universal algebra. Chapters
II and III respectively construct and analyse a model of the Propositional
Calculus, introducing in simple form many of the ideas needed for the more
complex First-Order Predicate Calculus, which is studied in Chapter IV, In
Chapter V, we consider first-order mathematical theories, i.e., theories built
on the First-Order Predicate Calculus, thus building models of parts of math-
ematics. As set theory is usually regarded as the basis on which the rest of
mathematics is constructed, we devote Chapter VI to a study of first-order
Zermelo-Fraenkel Set- Theory. Chapter VII, on Ultraproducts, discusses a
technique for constructing new models of a theory from a given collection
of models. Chapter VIII, which is an introduction to Non-Standard Analysis,
is included as an example of mathematical logic assisting in the study of
another branch of mathématics. Decision processes are investigated in Chap-
ter IX, and we prove there the non-existence of decision processes for a num-
ber of probiems. In Chapter X, we discuss two decision problems from other
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branches of mathematics and indicate how the results of Chapter IX mar
"be applied.

This book is intended to make mathematical logic available to mathema-
ticians working in other branches of mathematics. We have included what
we consider to be the essential basic theory, some useful techniques, and some
indications of ways in which the theory might be of use in other branches
of mathematics.

We have included a number of exercises. Some of these fill in minor gaps
in our exposition of the section in which they appear. Others indicate aspects
of the subject which have been ignored in the text. Some are to help in under-
standing the text by applying ideas and methods to special cases. Occasion-
ally, an exercise asks for the construction of a FORTRAN program. In such
cases, the solution should be based on integer arithmetic, and not depend
on any special logical properties of FORTRAN or of any other programming
language.

The layout of the text is as follows. Each chapter is divided into numbered
sections, and definitions, theorems, exercises, etc. are numbered consecu-
tively within each section. For examptle, the number 2.4 refers to the fourth
item in the second section of the current chapter. A reference to an item in
some other chapter always includes the chapter number in addition to item
and section numbers.

We thank the many mathematical colleagues, particularly Paul Halmos
and Peter Hilton, who encouraged and advised us in this project. We are
especially indebted to Gordon Monro for suggesting many improvements
and for providing many exercises. We thank Mrs. Blakestone and Miss
Kicinski for the excellent typescript they produced.

Donald W. Barnes, John M. Mack
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Chapter 1
Universal Algebra

§1 Introduction

"The reader will be familiar with the presentation and study of various
algebraic systems (for example, groups, rings, modules) as axiomatic systems
consisting of sets with certain operations satisfying certain conditions. The
reader will also be aware that ideas and theorems, useful for the study of
one type of system, can frequently be adapted to other related systems by
making the obvious necessary modifications.

In this book we shall study and use a number of systems whose types

are related, but which are possibly unfamiliar to the reader. Hence there is
obvious advantage in beginning with the study of a single axiomatic theory
which includes as special cases all the systems we shall use. This theory is
known as univérsal algebra, and it deals with systems having arbitrary sets
of operations. We shall want to avoid, as far as possible, axioms asserting
the existence of elements with special properties (for example, the identity
element in group theory), preferring the axioms satisfied by operations to
take the form of equations, and we shall be able to- achieve this by giving
a sufficiently broad definition of “operation”. We first recall some elementary
facts. v ' :
An n-ary relation p on the sets 4, ..., 4, is specified by giving those
ordered n-tuples (a,, . .., a,) of elements a; € A; which are in the relation p.
Thus such a relation is specified by giving those elements (ag, ..., an) of the
product set A; x ' -+ x A, which are in p, and hence an' n-ary relatlon on
Ay, ..., A, s s1mp1y a subset of A, x - x A,. For binary relations, the
notatlon ‘a;pay” is commonly used to express “(a;, a;) is in the relation p”,
but we shall usually write this as either “(ai, a;) € p” or “p(ay, a,)”, because
¢ach of these notations extends naturally to n-ary relations for any .

A function f:4 — B is a binary relation on A and B such that, for each
a € A, there is exactly one b e B for which (a, b) € f. It is usual to write this
as f(a) = b.Afunction f(x, y)“of two variables” x € A, y € B, with valuesin C,
is simply a function f:4 x B — C.Foreachae Aandbe B,(a,bje A x B
and f((a, b)) € C. It is of course usual to omit one set of brackets.. There are.
advantages in retaining the variables x, y in the function notation. Later in
this chapter, we will discuss what is meant by variables and give a definition
which will justify their use.

* Preliminary Definition of Operation. An n-ary operation on the set A is
a function t: A" — A. The number n is called the arity of t.

1



2 1 Universal Algebra

Examples

1.1. Multiplication in a group is a binary operation. The *-product of
two elements a, b is written axb or simply ab instead of the more systematic
*(a, b).

1.2. Inagroup G, we can define a unary operation i:G — G by putting
i(a) = a™ L.

1.3. A O-ary operation on a set A is a function from the set A° (whose
only element is the empty set &) to the set A4, and hence can be regarded as
a distinguished element of A. Such an operation arises naturally in group
theory, where the 0-ary operation e gives the identity element of the group G.

One often considers several different groups in group theory. If G, H
are groups, each has its multiplication operation: *;:G x G - G and
«;:H x H — H,but one rarely uses distinctive notations for the two multi-
plications. In practice, the same notation = is used for both, and in fact
multiplication is regarded as an operation defined for all groups. The defini-
tion of operation given above is clearly not adequate for this usage of the
word.

Here is another example demonstrating that our preliminary definition
of operation does not match common usage. A ring R is usually defined
as a set R with two binary operations +, x satisfying certain axioms. A
commonly occurring example of a ring is the zero ring where R = {0}. In
this case, there is only one function R x R — R, and so +, x are the same
function, even though + and x are still considered distinct operations.

We now give a series of definitions which will overcome the objections
raised above.

Definition 1.4. A type  is a set T together with a function ar: T — N,
from T into the non-negative integers. We shall write = (T, ar), or, more
simply, abuse notation and denote the type by T. It is also convenient to
denote by T, the set {t € Tl|ar(t) = n}.

Definition 1.5. An algebra A of type T, or a T-algebra, is a set A together
with, for each t € T, a function t,: 4> — A. The elements te T, are called
n-ary T-algebra operations.

Observe that each ¢, is an operation on the set A in the sense of our pre-
liminary definition of operation. As is usual, we shall write simply (ay, . . . , @)
for the element t (ay, . . ., a,), and we shall denote the algebra by the same
symbol A as is used to denote its set of elements.

Examples

1.6. Rings may be considered as algebras of type T = ({0, —, +, -}, ar),
where ar(0) = 0,ar(—) = 1,ar(+) = 2,ar(*) = 2. We do not claim that such
T-algebras are necessarily rings, we simply assert that each rlng is an example
of a T-algebra for the T given above.



§1 Introduction 3

1.7. If R is a given ring, then a module over R may be regarded as a
particular example of a T-algebra of type T = ({0, —, +} U R, ar), where
ar(0) = 0, ar(—) = 1, ar(+) = 2, and ar(4) = 1 for each Ae R. The first
three operations specify the group structure of the module, while the re-
maining operations correspond to the action of the ring elements.

1.8. Let S be a given ring. Rings R which contain S as subring may
be considered as T-algebras, where T = ({0, —, +,} U S, ar), ar(0) = 0,
ar(—) = 1, ar(+) = 2, ar(-) = 2, and ar(s) = O for each s € S. The effect of
the S-operations is to distinguish certain elements of R.

Definition 1.9. T-algebras A4, B are equal ifand onlyif 4 = Bandt, = t3
orallteT. :

Exercise 1.10. Give an example of unequal T-algebras on the same set
A.

Definition 1.11. If A is a T-algebra, a subset B of A4 is called a T-
subalgebra of A if it forms a T-algebra with operations the restrictions to
B ofthose on A, ie., ifforall nand for allt € T, and b4, .. ., b, € B, we have
tuby,...,b)eB.

Any intersection of subalgebras is a subalgebra, and so, given any subset
X of A, there is a unique smallest subalgebra containing X—namely, the
subalgebra N{U|U subalgebra of 4, U = X}. We call this the subalgebra
generated by X and denote it by (XD, or if there is no risk of confusion,

by (XD.

Exercises

1.12. A is a T-algebra. Show that & is a subdalgebra if and only if
To = . Show that for all T, every T-algebra has¢a unique smallest sub-
algebra.

Many familiar algebraic systems may be regarded as T-algebras for more
than one choice of T. However, the subsets which form T-subalgebras may
well depend on the choice of T.

1.13. Groups may be regarded as special cases of T-algebras where T =
({*}, ar) with ar() = 2, or of T"-algebras, where T' = ({e, i, *}, ar), ar(e) = 0,
ar(i) = 1, ar(x) = 2. Show that every T"-subalgebra of a group is a subgroup,
but that not every non-empty T-subalgebra need be a group. Show that if
G is a finite group, then every non-empty T-subalgebra of G is itself a group.

Definition 1.14. Let A, B be T-algebras. A homomorphism of A4 into B is
afunction ¢: 4 — Bsuchthat,forallte Tandallay,...,a,€ A(n = ar(z)),
we have

w(tA(ah AR an)) = tB((D(al)7 Pt ‘p(an) )

This condition is often expressed as “¢ preserves all the operations of T”.
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Clearly, the composition of two homomorphisms is a homomorphism.
Further, if ¢: A — B is a homomorphism and is invertible, then the inverse
function ¢~ !':B — A is also a homomorphism. In this case we call ¢ an
isomorphism and say that A and B are isomorphic.

§2 Free Algebras

Definition 2.1. Let X be any set, let F be a T-algebra and let 6: X — F
be a function. We say that F (more strictly (F, o)) is a free T-algebra on the
set X of free generators if, for every T-algebra A and function 7: X — A4,
there exists a unique homomorphism ¢:F — A4 such that go = 1:

X z —F
/
/

Observe that if (F, o) is free, then ¢ is injective. For it is easily seen that
there exists a T-algebra with more than one element, and hence if x,, x; are
distinct elements of X, then for some 4 and t we have t(x;) # 1(x,), which
implies a(x;) # 0(x,).

The next theorem asserts the ex1stence of a free T-algebra on a set X, and
the proof is constructive. Informally, one could describe the free T-algebra
on X as the collection of all formal expressions that can be formed from X
and T by using only finitely many elements of X and T in any one expres-
sion. But to say precisely what is meant by a formal expression in the
elements of X using the operations of T is tantamount to constructing the
free algebra.

Theorem 2.2.  For any set X and any type T, there exists a free T-algebra
on X. This free T-algebra on X is unique up to isomorphism.

Proof. (a) Uniqueness. We show first that if (F, o) is free on X, and if
¢:F — F is a homomorphism such that ¢o = ¢, then ¢ = 1, the identity
map on F. To show this, we take A = F and 7 = ¢ in the defining condition.
Then 1z:F — F has the required property for ¢, and hence by its uniqueness
is the only such map.
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Now let (F, ¢) and (F, ¢') be free on X.

X —>F

Since (F, o) is free, there exists a homomorphism ¢:F — F’ such that
¢@o = d’. Since (F', o) is free, there exists a homomorphism ¢':F’ — F such
that ¢'c’ = ¢. Hence ¢'po = (p = 0, and by the result above, p'¢ = 15
Similarly, @@’ = 1p.. Thus ¢, ¢’ are mutually i mverse 1somorphlsms and so
uniqueness is proved.

(b) Existence. An algebra F will be constructed as a union of sets F,
(n € N), which are defined inductively as follows.

(1) Fo is the disjoint union of X and T,.
(ii) Assume F, is defined for 0 < r < n. Then define

Y

k
Fn = {(t, Ay - ,ak)]te T, ar(t) = k, aieF”, Z ri=n-— 1}
i=1

(iii) Put F = U F,.
neN
The set F is now given. To make it into a T-algebra, we must specify the
action of the operations t € T.

iv) Ifte T, and ay,...,a. € F, put tlay,...,a) = (t,ay,...,a) In
particular, if t € Ty, then ¢ is the element ¢ of F.

This makes F into a T-algebra. To complete the construction, we must
give the map 7: X — F.

(v) For each x e X, put g(x) = xe Fy.

Finally, we have to prove that F is free on X, i.c., we must show that if 4
is any T-algebra and 7:X — A any map of X into A, then there exists a
unique homomorphism ¢:F — A such that po = 7. We do this by con-
structing ihductively the restriction ¢, of ¢ to F, and by showing that ¢,
is completely determined by 7 and the ¢ for k < n.

We have Fo = T U X. The homomorphism condition requires (po(rF) =
t, for t e Ty, while for x € X we require @a(x) = 7(x), and so we miust have
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@o(x) = 7(x). Thus @o:Foy — A is defined, and is uniquely determined by the
conditions to be satisfied by ¢.

Suppose that ¢, is defined and uniquely determined for k < n. An
element of F,(n > 0) is of the form (¢, a, . . ., &), where t € T}, a; € F, and

Z r; = n — 1. Thus ¢,(a;) is already uniquely defined for i = 1,..., k.
i=1
Furthermore, since (¢, a,,...,a,) = tay, ..., a), and since the homomor-

phism property of ¢ requires that
ot ay, ..., &) = tlar), . .., pla)),

we must define

(Pn(t9 ap, ..., ak) ‘= t((pn(al)a ey (Prk(ak))-

This determines ¢, uniquely, and as each element of F belongs to exactly
one subset F,, on putting ¢{a) = ¢,(x) for a € F, (n = 0), we see that ¢ is a
homomorphism from F to A satisfying @a(x) = @o(x) = t(x) for all xe X
as required, and that ¢ is the only such homomorphism. [J

The above inductive construction of the free T-algebra F fits in with its
informal description—each F, is a collection of “T-expressions”, increasing
in complexity with n. The notion of a T-expression is useful for an arbitrary
T-algebra, so we shall formalise it, making use of free T-algebras to do so.

Let A be any T-algebra, and let F be the free T-algebra on the set X, =
{x1,...,x,}. For any (not necessarily distinct) elements a,,...,a,€ 4,
there exists a unique homomorphism ¢:F - Awithg(x;)) = a;(i=1,..., n).
If we F, then ¢(w) is an element of A which is uniquely determined by
a,, ..., a, Hence we may define a function w,: A" — A by putting w,(a, ...,
a,) = @(w). We omit the subscript 4 and write simply w(a;, ..., a,). If in
particular we take 4 = Fand q; = x; (i = 1, ..., n), then ¢ is the identity
and w(xy,..., X, = w.

Definition 2.3. A T-word in the variables x,, ..., x, is an element of
the free T-algebra on the set X, = {x,, ..., x,} of free generators.

Definition 2.4. _A word-in the elements a,, . . . , a, of a T-algebra 4 is an
element w(a,, ..., a,) € A, where w is a T-word in the variables x4, ..., X,

We have used and even implicitly defined the term “variable” in the above
definitions. In normal usage, a variable is “defined” as a symbol for which
any element of the appropriate kind may be substituted. We give a formal
definition of variable, confirming that our variables have this usual property.

Definition 2.5. A T-algebra variable is an element of the free generating
set of a free T-algebra.

Among the words in the variables x, ..., x,arethewords x;(i = 1,...,n),
having the property that x;(a,, ..., a,) = a;. Thus variables may alsc be
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regarded as coordinate functions. The concept of a coordinate function
certainly provides the most convenient definition of variable for use in
analysis. For example, when we speak of a function f(x, y) as a function of
two real variables x, y, we have a function f, defined on some subset of
R x R, together with coordinate projections x(a, b) = a, }a, b) = b(a, b€ R),
and f(x, y) is in fact the composite function f{(a, b) = f(x(a, b), ¥(a, b)).

Exercises

2.6. T consists of one unary operation, and F is the frec T-algebra on a
one-element set X. How many elements are there in F,? How many elements
are there in F? ‘

2.7. IfTisemptyand X is any set, show that X is the free T-algebra on X.

2.8. T consists of a single binary operation, and F is the free T-algebra
on a one-element set X. How many elements are there in F?

2.9. If T consists of one O-ary operation and one 2-ary operation, and
if X = &, then the free T-algebra F on X is countable.

2.10. T is finite or countable, and contains at least one 0-ary operation
and at least one operation ¢t with ar(t) > 0. X is finite or countable. Prove
that F is countable.

§3 Varieties of Algebras

Let F be the free T-algebra on the countable set X = {x,, x5,...} of
variables. Although each element of F is a word in some finite subset X, = -
{xys. .., Xu}, we shall consider sets of words for which there may be no bound
to the number of variables in the words.

Definition 3.1, An identical relation on T-algebras. is a pair (4, v) of
elements of F,

There is an n for which u, v are in the free algebra on X,, and we say
that (u, v) is an n-variable identical relation for any such n.

Definition 3.2. The T-algebra A satisfies the n-variable identical relation
(u,v), 0or (u,v)is a law of A, if w(a,, ..., a,) = va;,...,a,)foralla,,...,a,€ A.

Equivalently, (4, v) is a law of A if ¢(u) = ¢(v) for every hombmorphism
¢:F = A

Definition 3.3. Let L be a set of identical relations on T-algebras. The
class V of all T-algebras which satisfy all the identical relations in L is called
the variety of T-algebras defined by L. The laws of the variety are all the
identical relations satisfied by every algebra of V.

Note that the set of laws of the variety includes L, but may be larger.
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Examples .

3.4. T consists of a single binary operation *, and L has the one element
{(xy*(xa%x3), (x1*X,)%x,): If A satisfies this identical relation, then ax(bxc) =
(axb)xc for all a, b, c € A. Thus the operation on A is associative and 4 is a
semigroup. The variety defined by L in this case is the class of all semigroups.

3.5. T consists of 0-ary, 1-ary and 2-ary operations e, i, * respectively.
L has the three elements

(g (X 2%X3), (X1 %x2)%X3),
(e*x‘ly xl);

(i(xJ*xy, €).

The first law ensures that x is an associative operation in every algebra
of the variety defined by L. The second shows that the distinguished element
e is always a left identity, while the third guarantees that i(a) is a left inverse
of the element a. Hence the algebras of the variety are groups.

Exercises

3.6. Show that the class of all abelian groups 1 a vaiiciy.

3.7. Ris aring with 1. Show that the class of unital left R-modules is a
variety.

3.8. Sisacommutative ring with 1. Show that the class of commutative
rings R with 1x = 15 and which contain S as a subring is a variety.

3.9. Is the class of finite groups a variety?

§4 Relatively Free Algebras
Let V be the variety of T-algebras defined by the set L of laws.

Definition 4.1. A ‘T-algebra R in the variety V is the (relatively) free
algebra of V on the set X of (relatively) free generators (where a function
6:X — R is given, usually as an inclusion) if, for every algebra 4 in V and
every function t:X — A, there exists a unique Fomomorphism @:R - 4
such that ¢ = 1.

This definition differs from the earlier definition of a free algebra only in
that we consider here only algebras in V.

Definition 4.2. An algebra is relatively free if it is a free algebra of some
variety.

Theorem 4.3.  For any type T, and any set L of laws, let V be the variety of
T-algebras defined by L. For any set X, there exists a free T-algebraof V on X.
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Proof: Let (F, p) be the free T-algebra on X. A congruence relation
on F is defined by putting 4 ~ v (where u, v.€ F) if ¢(u) = ¢(v) for every
homomerphism ¢ of F into an algebra in V. Clearly ~ is an-equivalence
relation on F. If now te€ T, and u; ~ v; (i = 1,..., k), then for every such
homomorphism ¢, @(u;) = ¢(v;), and so

(p(t(ula sy uk)) = t((p(ul)a s (P(uk)) = t((P(vl)a e (P(v)‘)) = (p(t(vb R ) vk) ),

verifying that ¢ is a congruence relation.
We define R to be the set of congruence classes of elements of F with
respect to this congruence relation. Denoting the congruence class con-

taining u by @, we define the action of t € T, on R by putting t(Hy, . ..., ) =
t{uy, . . ., ). This definition is independent of the choice of representatives
Uy, - . . , Uy Of the classes 7y, . . ., T, and makes R a T-algebra. Also, the map

u — U is clearly a homomorphism #:F - R. Finally, we define 6:X — R
by a(x) = p(x). :

We now prove that (R, o) is relatively free on X. Let 4 be any algebra in
V, and let T: X — A be any function from X into 4. Because (F, p) is free,
there exists a unique homomorphism y:F — 4 such that yp = 1.

—>F

%/

For 71 € R, we define ¢(u1) = y(u). This is independent of the choice of
representative u of the element %, since if # = 7, then Y(u) = Y(v). The map
@:R — Aisclearly a homomorphism,and ¢o = @np = yip = 1. If¢":R - A4
is another homomorphism such that ¢’c = 1, then ¢’np = 1 and therefore
¢'n = . Consequently for each element & € R we have

'@ = 'n(u) = Y(u) = o@),

and hence ¢’ = @. []

When considering only the algebras of a given variety V, we may redefine
variables and words accordingly. Thus we define a V-variable as an element
of the free generating set of a free algebra of V, and a V-word in the V-variables
Xi, ..., Xy as an element of the free algebra of V on the free generators

' {x;,. . ,x,.}.
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Examples

4.4. T consists of a single binary operation which we shall write as
juxtaposition. Let V' be the variety of associative T-algebras. Then all
products in the free T-algebra obtained by any bracketing of x;,..., x,,
taken in that order, are congruent under the congruence relation used in our
construction of the relatively free algebra, and correspond to the one word
X1X; " -+ X, of V. We observe that in this example, all elements of the abso-
lutely free algebra F, which map to a given element x, x, - - - x, of the relatively
free algebra, come from the same layer F,_, of F.

4.5. T consists of a 0-ary, a 1-ary and a 2-ary operation. V is the variety
of abelian groups, defined by the laws given in Example 3.5 together with the
law (x;x3, x2x,). In this case, the relatively free algebra on {x,, ..., x,} is
the set of all x1'x% - - - x;» ( or equivalently the set of all n-tuples (ry, ..., 7,))
with r; € Z. Here the layer property of Example 4.4 does not hold, because,
for example, we have the identity e € Fo, x; ' € Fy, xy '*x; € F, and yet
€ = X *X;.

Exercises

4.6. K is a field. Show that vector spaces over K form a variety V of
algebras, and that every vector space over K is a free algebra of V.

4.7. Risacommutative ring with 1 and V is the variety of commutative
rings S which contain R as a subring and in which 1 is a multjplicative
identity of S. Show that the free algebra of ¥ on the set X of variables is the
polynomial ring over R in the elements of X.



