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Preface

There are two well-established seminarsat the Department of Mathematical Analysis
of the Charles University Prague. One is the seminar on Potential Theory and the
other the seminar on Modern Theory of Real Functions. It has been established that
some of the problems subjected to study in these seminars are closely related resul-

ting in the combined investigation of the very foundations and interrelations of the

The first version of the manuscript was prepared in April 1982 in order to
serve as a complement to lectures at Erlangen and Eichstdtt Universities. Since that
time the work has been greatly extended and is now quite voluminous. It is only
fair to admit that the manuscript is not free of misprints and shortcomings and does
not contain -all sources dealing with the subject. Any useful commentary and supple-
mentary contributions would be gratefully received by the authors.

As many persons cooperated in the preparatory work on the manuscript let
us mention at least some of those who extended their generous help in support of the
authors. Let us quote amongst others our colleagues O.John, D.Preiss, J.Vesely and
students M.Chlebik, J.Hrdina, V.Kelar, T.Schiitz, v.5verdk and R.Thomas.

At this occasion let us express our gratitude and indebtness to Mrs. Erika Ritter
from Erlangen who has devoted the best care to the final re-typing of the text. In-
sertion of mathematical symbols was done by the authors who themselves are responsible
for all the possible mistakes.

In concluding this.preface we have to stress our special thanks to those who
have tirelessly supported us in our endeavour to bring this work to a succesful finish.
We thank, in particular, Dr. Niels Jacob, Erlangen, for his assistance in proof reading.
Special thanks are due to Professor Heinz Bauer without whose participation it would

have been impossible to carry out our task.

]
N.ZL_'

ByCiarky 1982 - Praha 1985



INTRODUCTION

Mathematical analysis has undergone its most outstanding and rapid development
in the present century. In many instances the classical penetrating results stemming
from the beginning of the century have been newly formulated only recently. Certain
new methods and specific approaches have brought more understanding of same classical
parts and have demonstrated similarities in disciplines where no connections may be

observed prima faciae. The fine topologies discussed in this book serve as an example.

The concept of approximate continuity which plays an important part in the theory
of real functions was defined at the beginning of this century. But the concept of
the density topology naturally connected with that of approximate continuity has been
introduced and investigated (relatively) only recently. The fine topology introduced
in the forties plays an important part in potential theory. Its methods in the theory
of harmonic functions facilitated many excelent results in this classical part of
mathematical analysis.

' It has become apparent that in spite of having different structures these topolo-
gies have many fundamental properties in common. Besides, certain methods and procedu-
res used in connection with density topology have recently influenced the investiga-
tion of fine topology in potential theory.

Both the density topology and the fine topology in potential theory are "fine
topologies" on a set which has already been equipped with an original coarser (metri-
zable) topology. Phenomena where two topologies are defined on a set can be encoun-
tered in mathematics quite easily. There is even a discipline of general topology -

- theory of "bitopological spaces" - which investigates these situations.

Thus nearly the whole first part of our book, i.e. "Abstract Fine Topology", can
be considered. as belonging to this part of topology. But we investigate mainly those
concepts which are related in a way to two fundamental examples of fine topologies
and concentrate chiefly upon that part of general theory which is suitable for appli-
cations in the theory of real functions or in the potential theory.

Among the general properties of fine topologies one of the most important quali-
ties and also one of the most suitable qualities from the point of applications is
the Lusin-Menchoff property to which we devote greater part of this volume. Though
it often happens that fine topologies in which we take interest are not normal, never-
theless, they allow us to separate each closed set and finely closed set by "alter-
nately" open sets. We call this property for which the theory of bitopological spaces
uses the word "binormality" the Lusin-Menchoff property as it is usual in the theory
of real functions when the density topology is investigated. Among others, the Lusin-
Menchoff property enables - as well as normality does - various constructions of fi-
nely continuous functions.

The fundamental technical means for constructing functions is the "Abstract
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inbetween theorem" which is simple and not new but which is - perhaps for the first
time - explicitly formulated here and provided with a simple proof. Other important
concepts are M-modification of a fine topology - which enables to extend finely
continuous functions "with the preservation of continuity and semicontinuity" -
and the Lusin-Menchoff property of base operators which finds applications in the
following text. New "Approximation Theorem" in I/3.6 and its applications also de-
serve attention.

One of the other problems investigated in this treatise is the following: un-
der which circumstances a space equipped with a fine topology is a Baire space, a
strong Baire space or a Blumberg space (I/4), and when finely continuous functions
are in Baire class one (I/2D). We also investigate properties of fine limits in an
abstract case (I/2C) .

Other interesting and not unimportant results (some of which are new) are con-
tained in I/5 which concerns the connectedness of fine topologies.

The beginning of the first chapter is devoted to the study of base operator
spaces. But the idea of this generalization of topological spaces is not new at
any rate. Among others, we produce some results already proved in the potential
theory for concrete base operators in a completely general version. Besides, the
concept of base operator (with the Lusin-Menchoff property) appears useful also in
real analysis.

In the second part, i.e. in "Fine Topology Methods in Real Analysis", we inve-
stigate in detail some fine topologies that occur in real analysis and employ in
high degree the general theorems produced in the first part.

The fundamental example of fine topology is a density topology which we study
in various degrees of generality (from the density topology on the real line to
the "abstract density topologies "which are investigated in lifting theory). We ha-
ve taken pains to find simple criteria which make it possible to obtain information
about some properties of the density topology under the assumption that we know
certain properties of the respective "differentiation basis". In our opinion it is
especially interesting (and perhaps new) to find simple conditions under which the
density topology has the Lusin-Menchoff property (6.34.B), the internal characte-
rization of abstract density topologies (Th. 6.39) and the possibility to use this
characterization in lifting theory.

We investigate (II/7.A.7.B) the concepts of a.e.-modification and r-modifi-
cation of a given fine topology which are generalizations of topologies defined
by R.J. O'Malley. The main new contribution is that our proofs enable us to prove
the Lusin-Menchoff property of a.e.-topology and r-topology under very general
circumstances. The new theorem about the approximation of r-continuous function
by approximately differentiable functions is also worth attention.

Another example of a fine topology with the Lusin-Menchoff property is the
"fine boundary topology" (II/7.D) and the contingent topology which is related to



it and investigated in "Exercises".

The Lusin-Menchoff property of topologies mentioned above is applied in II1/8
to obtain results concerning constructions of various functions, especially appro-
xXimately continuous functions where many of the results are new. Concerning the
theorem about the extension from Fg-sets in II/8.C we would like to mention that
we do not use topological methods here.

In II/9 we concentrate upon the boundary behaviour of functions. The chief new
idea is use of the Lusin-Menchoff property of "fine boundary topology". The utility
of this method is demonstrated in I11/9.C,D,E.

The final third part, i.e. "Fine Topology Methods in Potential Theory", is de-
voted to fine potential theory. The investigation of fine topology and finely hyper-
harmonic functions in the framework of abstract harmonic spaces (or even more ge-
neral standard H-cones) culminates in the study of the Dirichlet problem on finely
open sets.

Among the purely topological properties of harmonic spaces the Lusin-Menchoff
property of the fine topology is of major importance. It is applied in various con-
nections. In chapters 12-14 we present a selfcontained theory of finely hyperharmonic
functions and of fine Dirichlet problem in harmonic spaces; until now this theory
has been established only under the assumption of the domination axiom D. The possi-
bility of generalization of the presented results to standard H-cones is suggested
in the Appendix.

Developing the theory of finely hyperharmonic functions we derive their basic
properties (III/12.A) and take interest in the properties of the cone of all nonne-
gative finely hyperharmonic functions (III/12.B). Besides, we also study the class
of all pointwise hyperharmonic functions on a finely open set and its subclass of
all its elements that are lower semicontinuous functions. Among new results let us
mention e.gl interesting theorem on removable singularities (Th. 12.20, 14.11).

The Dirichlet problem is solved either by means of Perron type method using
fine superfunctions or of the Wiener type method when the given finely open set is
exhausted by finely regular sets.

A quite new approach to the solution of the fine Dirichlet problem based on
quasitopological concepts is shown in Chapter 14. The quasitopological methods are
also used to characterize finely hyperharmonic functions (Th. 14.8). The results
contained in Chapter 14 embrace both a part of the preceding chapters as well as
the basic results of Fuglede's theory of finely hyperharmonic functions in spaces
with axiom D.

In the Appendix we investigate analogous problems within the framework of the
abstract theory of standard H-cones. We present an abstract definition of the class
of "finely hyperharmonic functions" and demonstrate its connections with the lo-
calized cone. Our results make it possible to develop the theory of fine Dirichlet

problem also in this very general context.



Note that each section ends with "Exercises" containing not only counterexam-
ples and generalizations of the given theorems but often also further new results
(even more general structures are investigated). Some of the results of the theory
of bitopological spaces, o-topologies, even further generalizations of abstract den-
sity topologies, the study of Keldych operators on finely open sets, a boundary beha-
viour of the Perron solution etc. may serve as an example. In the "Exercises" one
can also find new results and results of other authors having a close relationship
to the investigated problems.

The "Exercises" are followed by "Remarks and Comments" where the authors try to
give information about the origin of concepts and results of the respective sections

and bring occasionally further quotations of authors dealing with similar problems.
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PROLOGUE

In (1915), A. Denjoy in his famous paper generalized the notion of a continui-
ty. A real function f 1is said to be approximately continuous at a point z if

there is a measurable set M which is "sufficiently great at z " with

lim  f(x) = f(2).
M3x-2

Greatness of a measurable set M at 2z 1is defined by the condition that

(%) lim == A(M 0 (z-h,z+h)) = 1,
2h
h-0
+
where ) stands for the Lebesgue measure.
The family of all functions approximately continuous at any point of R

has many nice properties. For example:

(a) Every approximately continuous function has the Darboux
property and belongs to the first class of Baire.

(b) Any bounded approximately continuous function is a derivative.

Almost half a century later, a new topology on the real line was introduced:
The so-called dens«ty topology consists of all measurable sets M satisfying

(*) at each of its points. Let us mention several interesting properties of this

topology:

(a) Any countable set of R is closed in the density topology.
(b) The density topology is not normal, so it is not metrizable.
(c) Only the finite sets are density compact.

It was proved that the "nice" system of all approximately continuous functions
is exactly the class of all continuous functions in the "bad" density topology.

By a thorough study of the density topology mathematicians succeeded to dis-
cover a lot of its important properties. Even though the density topology was dis-
covered in the fifties, many methods labelled recently as "topological" have been
used much earlier. For example, A. J. Ward (1933) used the method similar to the
proof of Urysohn's lemma which enables to construct approximately continuous func-
tions (and therefore also derivatives) of various properties. Similarly Z. Zahorski

(1950) proved that for any Gd-—set 7Z of Lebesgue measure zero there is always



a non-negative bounded approximately continuous function f such that

Z = {x eR: f(x)=0}.

It is not very difficult to construct on the real line a G5 - set 2z of Lebesque
measure zero which is at the same time everywhere dense. In fact, enumerating all
rational numbers by {rn} , we can define the desired set as
® o
2 = [V U -k e sk,
k=1 n=1 n n+l

Using the theorem mentioned above, there is an approximately continuous function £,
say O £ f <1, such that 2z = f—l(o). Of course, f cannot be continuous at any
point z€R\Z (since f(z) > 0 and 2z 1is dense). Hence, even though f is a
derivative of some function F it is not Riemann integrable on any interval

[a,b] . By the way, we have just constructed a function F which has the derivative
at each point of R but this derivative F” is discontinuous on a "massive" set
R\Z. Moreover, both the sets

{xeR: F(x) = 0}, { xeR: F'(x)> 0O}

are dense in R. The construction of functions of this type, the so-called Pompeiu
functions, goes back to the beginning of our century (for some references and for
the constructions of Pompeiu functions see e.g. BlaZek, Bordak and Maly's paper (1978)).
The introduction of the density topology throws light upon many problems. Star-
ting from it, Zahorski's theorem becomes at once clearer and we can see that some new
"modern" methods clear up certain old problems from the theory of real functions.
Still more evident becomes an advantage of the use of topological methods in the
construction of unbounded derivatives in Section 8.B.
Observe now that even if the density topology is not normal, it has in some sen-
se the property of normality with respect to the Euclidean topology. The use of this
so-called "Lusin-Menchoff property" represents almost main topic of this work.

Let us turn our attention to another plentiful part of analysis with a long and
interesting history - to the classical theory of harmonic functions. The Dirichlet
problem is probably its corner stone. It is historically the oldest problem of exis-
tence in potential theory and various attacks on this problem brought many important
mathematical discoveries. Given a bounded open set U < R" and a continuous function
£ on the boundary 83U of U, by the classicat solution of the Dindichlet problem
for f we understand a continuous function F on the closure U of U which is

harmondic cn U (i.e. it satisfies the Lapface equation
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in U) and coincides with f on 3U. A set U 1is termed #regufar if there exists
a classical solution of the Dirichlet problem for each continuous function f on 3U.
Towards the close of the last century, the Dirichlet problem was regarded as always
solvable and it was believed that methods of proof powerful enough would be found to
confirm this opinion. A new period begins with the recognition that this opinion is
not justified. Of course, now it is well known that there are open bounded sets in
R" which are not regular. On the boundaries of such sets continuous functions can
be prescribed for which the Dirichlet problem cannot be solved. Nevertheless, we can
assign to those functions something like a solution in a reasonable way. It can be
done, for example, in a following manner.

A (!2—function s 1is called sz—bupe&hanmon{c on U if As < Oon U; the
key role is played by the system of all supetharmonic functions which arises as a
natural generalization from the system of all (12—superharmonic functions (for examp-
le, as the smallest family containing c!z—superharmonic functions closed with res-
pect to the limits of increasing sequences which are finite on a dense set). For a
continuous function f on 38U, if we denote by Hg the infimum of the family of all
superharmonic functions on U whose lower limit dominates f at each boundary point
of U, then Hg is a harmonic function on U and it is called the Perron generaf«-
zed sofution of the Dirichlet problem for f. A point 23U is termed a regufar boun-
dary point if

lim  HX(x) = £(2)
U3x—2z

for every continuous function f on 3U. The remsining points of 35U are termed
1regulan.

In (1939), the notion of th«nness of a set A at a point x was introduced
by M. Brelot: A set A is thin at xeA if there is a superharmcnic function u
defined on a neighborhood of x such that

u(x) < lim inf u(y).
A3y—X

In a letter from 30th December 1940 adressed to M. Brelot, H. Cartan observed that
A is thin at x if and only if the complement of A 1is a neighborhood of x in
the coarsest tcopology on Rr" making all superharmonic functions continucus. This
new topology was termed the f4ne Zopofogy and in the dimension n > 1 it differs
from the Euclidean one. Socn the fine topology proved itself to be a natural and

important tool in the study of more refined properties in potential thecry. The

resemblance of its properties with those of the density topology is admirable. In

the case n > 1, for the fine topology on R" the following assertions can be proved:



