INTRODUCTION TO

SYSTEM
SOF TWARE

y 8762766

Introduction to

SYSTEM SOFTWARE

D M DHAMDHERE
Indian Institute of Technology

Bombay
E8762766
W
(N}
e

Tata McGraw-Hill Publishing Company Limited
NEW DELHI

Lo b
~
~§
¥

b

© 1986, TATA McGRAW-HILL PUBLISHING COMPANY LIMITED

No part of this publication can be reproduced in any form or by any means
without the prior written permission of the publishers

This edition can be exported from India only by the publishers,
Tata McGraw-Hill Publishing Company Limited

Publishing Manager: RaJIv BERI
Production Editor: RANJAN KauL
Production Supervisor: B L DOGRA
Manuscript Lead: N SUBRAHMANYAM

This book has been subsidised by the Government of India,
through the National Book Trust, India, for the benefit of students.

NBT Code: 45-240/1982
Rs 36.60

Published by Tata McGraw-Hill Publishing Company Limited,
12/4 Asaf Ali Road, New Delhi 110 002,typeset at
Composers, E-8 Kalkaji, New Delhi and printed at
Rajkamal Electric Press, 4163 Aryapura, Dethi 110 007

8762766

Introduction to

SYSTEM SOFTWARE

Mc Graw-Hill Offices

New Delhi
New York
St Louss
San Francisco
Auckland
Bogotd
Guatemala
Hamburg
Lisbon
London
Madrid
Mexico
Montreal
Panama
Paris

San Juan
S&o Paulo
Singapore
Sydney
Tokyo
Toronto

Preface

Computer science education has undergone rtant change in the past few years.
With computers making inroads into newer fields, the requirements of the industry have
changed from mere programming personnel to professionals capable of a systems ap-
proach to the design of computer applications. This requires a computer professional to
possess a broad knowledge of computer science, with system software concepts occupy-
ing a very important place. The resulting two-tier nature of computer education, aimed
at producing professionals and researchers respectively, projects new requirements of
teaching and support material.

This book is intended as a text for introductory courses on aspects of system software
at the undergraduate and postgraduate levels. The contents are designed to satisfy the
requirements of the courses variously described as’'Systems programming (courses 14
of ACM curriculum 68 and CS-11 of AC, curriculum 77) and “‘Operating systems and com-
puter architecture’’ (courses CS-6,7 of ACM curriculum 77 and SE-6,7 of IEEE curriculum
77), around which most universities have designed their courses. This book covers all
the material considered essential to effectively support these courses, maintaining an op-
timum balance between the coverage of software processors and software tools on the
one hand and computer architecture and operating systems on the other. This book has
been motivated by the fact that most existing books fail to cover all aspects of contem-
porary system software adequately.

The book is organised into three parts with a common introduction. The Introduction
creates the necessary background for the rest of the book by describing characteristics
of system programs, their evolution and the basic terminology of the field. Part I (Chapters
1-5) of the book is devoted to the study of software processors. After a brief discussion
of the basic translator schemes, separate chapters appear on assemblers, compilers, pro-
cessors for the interactive environment and linkers/loaders. Part II is devoted to an in-
depth study of operating systems. Identification of the basic tasks and components of an
operating system in Chapter 6 is followed by Chapters 7-9 discussing the processor, storage
and information management components of the operating system. Part III (Chapter 10)
discusses the variety of software tools used in practice, and their design aspects.

Throughout the text, the approach used is in keeping with the introductory nature of
the text. For every topic, preliminary material is introduced in simple words to create
the necessary background. This is followed by a clear and detailed discussion of the basic
design issues. Some practical case studies are included to give the reader a glimpse of
the design considerations used in practice. Exercises included at appropriate points
stimulate interest and motivate the reader to an in-depth analysis of practical situations

vi Preface

and compromises. The bibliography points to more specialised material on these topics.
While using this book as a text, it is expected that the instructor will assign group pro-
jects covering various aspects of system software to the participants. This will help con-
solidate the material covered.

Apart from use as a text, this book can be used in the professional computer environ-
ment as a book for ready reference or as a text for enhancement of skills. With the grow-
ing use of microcomputers in business and industry many middle and lower manage-
ment personnel are turning into computer end-users. This book will provide them an op-
portunity for a comprehensive exposure to the area of system software.

The motivation for this book comes from the teaching of systems programming and
operating system courses for a number of years. I thank all my students for contributing
to the book in an indirect, but vital way. I'also thank the Curriculum Development Cell
of IIT Bombay for supporting the manuscript preparatjon.

D M DHAMDHERE

Contents

Preface : v

Introduction 1

I.1 What is System Software? I

1.2 Components of System Software—An Analogy 3
I.3 Evolution of System Software ¢

1.4 The Model of a Computer System &

PART I SOFTWARE PROCESSORS 17
1 Introduction to Software Processors 19

1.1 Translators and Loaders 19
1.2 Interpreters 20

2 Assemblers 21

2.1 Elements of Assembly Language Programming 2/
2.2 Overview of the Assembly Process 24

2.3 Design of a Two-Pass Assembler 30

2.4 Case Study of a Single Pass Assembler 55

2.5 Macros and Macro Processors 64

3 Compilers 85

3.1 What is a Compiler? &5

3.2 Overview of the Compilation Process &7
3.3 Programming Language Grammars 93
3.4 Scanning (Lexical Analysis) 101

3.5 Parsing 105

3.6 Storage Allocation 174

3.7 Compilation of Expressions 127

3.8 Compilation of Control Structures 136
3.9 Code Optimisation 140

4 Software Processors for Interactive Environments 147

4.liInteractive Computing and Program Development 147
4.2 Interpreters 149
4.3 Incremental Compilers 155

S Loaders and Linkage Editors 163

5.1 Loading, Linking and Relocation 163
5.2 Program Relocatability 166
5.3 Overview of Linkage Editing /68

viii Contents

5.4 Linkage Editor of IBM/360 175

5.5 Linking for Program Overlays 185

PART II OPERATION SYSTEM

6 Overvit'éiv ofVO‘perating System Functions
6.1 Batch Processing Systems /92

6.2 Multiprogramming Operating Systems 200

6.3 Time-Sharing Systems 210
7 Processor Management

7.1 Jobs, Programs and Processes 217

7.2 Job Scheduling 2/8

7.3 Process Scheduling 226

7.4 Process Synchronisation 236
7.5 Process Communication 249
7.6 Deadlocks 254

7.7 Processor Management in Multiprocessor Operating Systems 263

8 Storage Management

8.1 Contiguous Storage Allocation 268

8.2 Noncontiguous Storage Allocation 275
8.3 Virtual Storage Implementation Using Paging 277

9 Information Management

9.1 10 Organisation and Physical IOCS 305

9.2 File Organisation 313
9.3 Logical IOCS 329
9.4 File Systems 335

PART 11l SOFTWARE TOOLS

10 Software Tools
10.1 Variety of Software Tools 356
10.2 Text Editors 364

10.3 Interpreters and Program Generators 367

10.4 Debug Monitors 369

10.5 Programming Environments 370

Appendix: Interrupt Organisation

A.1 The Program Status Register (PSR) 373

A.2 The Interrupt Hardware 373
A.3 Interrupt Processing 375
A.4 Interrupt Structure of VAX/11

References and Bibliography

Index

376

189
191

217

267

304

353
355

373

379
391

Introduction

1.1 What is System Software?

Most programmers using a contemporary computer system know the fundamental distinction bet-
ween computer software and computer hardware. Many of them might also be aware that com-
puter software can be further divided into ‘system software’ and ‘applications software’. However,
a question like **What identifies a program as a part of the system software?” (i.e., “"What is a system
program?’’ may not elicit an answer readily. This is because of the tendency in manufacturer
supplied literature to describe the conglomerate form of system programs, namely system software,
as if it were a single entity performing a collection of functions. Hence a programmer is unaware
of the fact that despite their diversity of functions, all s.ystem programs do possess a few common
characteristics. How can programs that edit a file, perform resource accounting or manage the main
storage of a computer system have anything at all in common? To answer this question, we will
first consider a simple definition of a system program that we wish to adopt as our working defini-
tion throughout this book. Later on we will trace the evolution of individual system programs to
examine the motivation for their development and their place in the system software of a contem-
porary computer system.)

A system program (SP) can be defined as a program ‘‘which helps an average computer user's
program to execute effectivVely on a computer system.”” The phrase “‘average user’’ has been in-
cluded in the definition just to exclude special purpose programs which fulfil specialised user needs.
Such special programs would be said to constitute the applications software of the computer system.
A system program is thus one which is required for the effective execution of a general user pro-
gram. Note that the term “‘execution’” includes all activities concerned with the initial input of the
program text and various stages of its processing by the computer system, namely, editing, storage,
translation, relocation, linking and eventual execution.

1.1.1 System Programs and System Programming

System programming can be defined as the activity of designing and implementing SPs. A ques-
tion that naturally arises is: In what manner does system programming differ from any other kind
of programming activity? To answer this question, we first pose a related question: In what man-
ner does an SP differ from any other kind of program, say a scientific program, a data processing
program, or an applications program?

In order to answer this question, let us once again look at the definition of an SP. An SP helps
to execule a general user program effectively on a computer system. What do we mean by the word
‘effectively'? Do we mean ‘effectively’ in terms of computer time, in terms of the programmer time
spent in designing and writing a program. or do we mean something else altogether? Actually we
mean “‘effectiveness’ of the entire process of program development and program execution. In other
words, this cffectiveness is a delicate balance between the (generally conflicting) aspects of (i) effec-
tiveness of utilisation of the computer resources and (ii) the effectiveness of utilisation of the human
resources involved in the development of a program. Whatever be the subjective criteria for weighing
the human and computer resources against each other, an SP is concerned with the overall op-
timisation of costs.

2 Introduction to System Software

Now, would the balance of computer and human costs vary from situation to situation due to
the influence of environmental factors like configuration of the computer system in terms of main
memory, auxiliary devices, etc.; or due to the nature of the computing environment—whether
amateur program development, i.e. student environment. or professional program development,
or professional data processing shop environment? If so, then the question naturally arises as to
the common characteristic of all SPs. This common characteristic is not in terms of the relative
weightages given to computer and human resources, nor in the standardised view of a computer's
usage environment. Instead, it is in terms of the primary motivation for the development of a system
program in the first place. This primary motivation can be explained as follows:

The writing of a system program is not merely a means to an end, but is instead an end in itself.

Now let us see what this really means. Consider a scientist or engineer writing a program fof
a specific problem on hand. The program is merely a means to obtain the results for the problem.
As long as this is achieved, the nature and characteristics of the program are immaterial to the
designer of that program. Thus, efficiency and structure of the program are of no consequence,
as also the elegance or clumsiness of algorithms used in it. To the designer of an SP. however, the
goal is to design and code the program so that the task is done not only correctly but also effective-
ly. Thus, the subjective balancing of the human and computer costs which form the basis of its
design has to be properly manifested in its behaviour while helping to run a user program. Thus,
. the efficiency of algorithms and the suitability of data structures used are of primary importance.
Of equal importance is the prominence given to the human resources required in the development
and maintenance of a program. Let us explain this through an example.

Consider a compiler for a language like FORTRAN which is very widely used in installations
devoted to scientific computing. If the designer of this compiler, which is an SP, concerns himself
mainly with the optimisation of the computer resources, say, CPU-seconds used by a job, he might
put the primary aim of the compiler as (i) fast compilation of a FORTRAN program, or (ii) efficient
execution of the program after it has been translated into the machine language form. If most jobs
in the installation are run only once or twice (a typical characteristic of a student job) and do not
execute for long, then fast compilation should be given prominence over efficient execution. On
the other hand, if jobs tend to execute for minutes or hours of computer time, then efficient execu-
tion should be given a higher priority. However, a compiler designed along these lines may not
optimise the sum total of human and computer resources expended in the execution of a job. For
example, the compiler might do an indifferent job of indicating all errors existing in a job. As a
consequence, the user might have to spend a considerable amount of his time in trying to find bugs
in his program. What is worse, such painstaking debugging will, in all probability, require extra
runs of the program on the computer, leading to consumption of more computer resources as well.

A compiler designed to give higher weightage to the human resources can perform exhaustive
checking of the program to detect all possible errors existing in it. This will help the user il.’l obtain-
ing his program in the ‘final’ form without wasting much time. However, such exhaustive error
indication support (known as diagnostic support) will slow down the compiler since it would now take
more time to process each statement. In this situation programmer time is costlier than comp.uter
time, so it would generally turn out that the slower compiler with good diagnostics is more optimal
than a fast compiler without adequate diagnostics. The importance attached to the human resources
therefore can hardly be underplayed.

The aspect in which an SP differs from any other kind of program is in the importance attached
to the environmental factors which, in turn, lead to subjective balancing of the human and com-

puter costs. Note that we keep on using the word *“subjective’ to underscore the fact that the balanc-

i i 3 ticular
' 5 ¢ ith a particular perspective of the utilisation ot a computer at a par
i cP e Peﬂormed . . bg\anging of costs also alters thus completely altering the

‘ . iderations = his is evidenced to some ex-
fundas ental cor i igni a piece of system sottware. Thisise

iderations in designing a p
fundamental cormsi

tent in the next section wherein we trace the history and evolution of various components of system
software. A discussion of the changing balance of costs and its influence on the strategy for system
software development can also be found elsewhere [Dhamdhere, 1980).

1.2 Components of System Software—An Analogy

In order to identify the key components of system software and understand their functions, let us
consider the similarities between a programmer X approaching a computer system to have his pro-
blem solved and an individual Y approaching a dress-shop to acquire a dress. While approaching
the computer, X who is probably a scientist may have an idea about the nature of results he ex-
pects ("I expect this to be a beautiful sinusoid,’ he might say). Similarly, while approaching the
dress-shop, Y might have a good idea as to what he/she expects to buy. But how do X and Y obtain
what they want? Not merely by dreaming about their ideas. Before they obtain what they want,
there is a lot of hard work to be put in.

Let us consider the dress-shop situation first. ¥ has to put in a certain amount of work inside
the dress-shop to obtain the dress that he/she has dreamt about. This could be as simple as choos-
ing from a set of readymade dresses. Or, if none suit Y’s choice, then Y would have to discuss his/her
requirements with the master dress-designer, and using his terminology, ¥ should be able to show
him how to obtain the desired features by using standard, well established steps in dress design.

After Y has specified the requirements, let us see how the dress actually gets made. The master
designer to whom Y explained his requirements does not actually cut and sew. Instead, using some
code or convention, he gives very specific and precise instructions to the cutting-and-tailoring sec-
tion of the dress-shop, where his instructions are carried out and the dress is actually made. In
the cutting-and-tailoring section, virtually hundreds of dress orders and specifications keep pour-
ing in. A section supervisor keeps track of these orders, schedules them for execution and actually
gets the work done from the low level cutter-tailor.

The reason why Y does not directly interact with the low level cutter-tailor is one of practicabili-
ty. For one thing, Y and the tailor do not speak the same language. While Y has ideas as to what
he/she wants, Y cannot supply the specifics the way the cutter-tailor wants them. For example,
Y wants bell-bottom trousers which look elegant rather than baggy, while the cutter wants to know
whether a 65 cm bottom is okay. This gap has to be bridged by someone who can communicate
meaningfully with ¥ and translate Y’s requirements into the form which the cutter-tailor would
understand.

A typtcal modern computer system operates much the same way as the dress-shop. While the
actual number-crunching is done in the central processor unit (CPU), it requires its information
in a very specific and rigid fornrat. The programmer X knows the details only from his own
viewpoint but he does not know how to supply them to the CPU. The language in which he can
supply the details is the “‘programming language,” while the language in which the CPU wants
them is the “machine language™. Therefore, the programmer’s specifications are presented to a
“language translator” or compiler which converts these into a set of instructions in the machine
language so that the CPU can understand them.

In order to extract the maximum work out of the CPU, the machine language programs are handed
over to the “‘operating system" which schedules the actual work to be done by the CPU from mo-
ment to moment. This is done so as to optimise the performance of the computer system as a whole.

The language translator and the operating system are themselves programs. Their function is:
to get:-the user’s program, which is written in a programming language, to run on the computer
system. We have already seen that all such programs which aid the excution of a user program
are called system programs (SPs). The collection of such SPs is the “system software’ of a par-
ticular computer system.

4 Introduction to System Software

Now. let us look into the economics of these arrangements from the viewpoint of the customer
or the computer user. When a customer goes to a dress-designing outlit. he ends up paying not
only for the cutter-tailor who does the actual job but al§6 for the section supervisor and scheduler,
as also for the master designer himself. If he were to do the job of the designer and supervisor himsell
and approach a cutter-tailor on his own. he would have to pay only the tailor who does his job.
He could thus save on the overheads of the complete organisation. However, he would have to pay
a certain price for these economies. He would have to learn the technical language which the tailor
understands and he would also have to acquire the techniques used by the master designer. In
the end, he may feel that it would have been cheaper for him to have gone to-the master designer
in the first place. Assuming that the organisation is not making inordinate profit, he will
not have to bear the excessive burden of overheads since the supervisor/scheduler would be trying
to optimise the performance of the work-force.

An identical argument holds good in the case of a computer system. By writing a program in
a higher level programming language, a-programmer obviates the need to acquire totally new skills
merely in order to run his program. The compiler performs the task of making his program
understandable to the CPU. In order to keep the total costs down. the OS optimises the performance
of the computer system. Thus, the two fundamental aspects of the task of the system software are:
(i) making available new/better facilities and (ii) achieving efficient performance. Various components
of system software perform various tasks which contribute towards these fundamental goals. In
the next Section, the salient features of these system software components are discussed.

1.3 Evolution of System Software

System programs which are the standard components of the software of most computer systems
today have evolved through a series of need-based developmental steps. The two-fold motivation
mentioned above arises out of a single primary goal. viz. of making the entire program develop-
ment process more effective.

The two aspects of program development cost, viz. human and computer costs, have to be weighed
against each other in order to develop the notion of effectiveness. To be more specific. we can call
this the notion of optimal effectiveness. Over the last two decades, the balance of human versus com-
puter costs has undergone a sea change. Today, human costs outweigh computer costs almost as
drastically as computer costs used to outweigh human costs about 20 years ago. Further, this rever-
sal has been brought about by a continuous and monotonic process. One would therefore expect
that the aim of obtaining effective utilisation of the computer system must have played a secon-
dary role throughout the evolution of system software. However the history of system software is
replete with quick reversals of priorities given to the two aspects of motivation, viz. introduction
of better facilities and effective utilisation of the system. This is so because these two aspects result
in contrary pressures on the balance of human and computer costs. The influence of introducing
new facilities therefore has to be offset by efforts to enhance effectiveness of computer utilisation
so as to restore the balance. We will see many instances of this as we trace the evolution of dif-
ferent components of system software.

1.3.1 Language Translators

Historically, the first important step in the evolution of system software was the development of
a language translator. In the early days, programs had (o be written in machine language. As we
saw in the dress shop analogy of the previous section, this is quite cumbersome from the program-
mer's viewpoint. Development of language translators permitted the programmer to code his pro-
gram in a language which was much more convenient to handle than the machine language of

a computer. Translators for a lgw-level programming language were termed assemblers and such
low-level languages were termed assembly languages.The assembly languages were merely humanis-
¢d machine languages which permitted the use of mnemonic operation codes like LOAD, ADD and
symbolic operands like VALUE, RESULT in place of machine instruction codes and machine ad-
dresses both of which are merely numbers, i.e. strings of digits. The assembly languages permit.
ted casy writing and modification of programs, but were still highly machine-dependent.

Machine-independent programming languages were the next to evolve. These languages were
termed higher level languages (HLLs) because they only required a programmer (o specify the logic
of solving a problem in the form of an algorithm, i.e. a step-by-step procedure which leads to the
solution of a problem. Each step of the procedure could represent a significant action in terms of
the program logic, like a computation, a decision, input of values, etc., and in no way depended
on the computer on which the program was to be executed. The use of HLLs [reed the programmer
from the need to know intricate details of a computer, also freeing him from mundane, low-level
activities like coding his program as a sequence of machine instructions. An HLL program had to
be translated into machine language before it could be executed on a machine, and this translation
was costlier than the translation of an assembly language program. However, this extra transla-
tion cost was more than offset by the reduction in the effort of a programmer in designing, coding
and debugging a program. Thus, not only could a program be designed using higher level program-
ming concepts like structuring of data and usc of procedure segments which are more natural from
the viewpoint ol a programmer, but the HLL translator could also assist the programmer by in-
dicating errors of specification at the source-language level during translation of a program. Fur-
ther. the translator could also make provision lor the detection and precise indication of run-time
crrors while an assembler could not.

Thus, the first two developments in system software were in favour of providing new conveniences
to a programmer at the cost of extra computer time requirements. The next developments were
concerned more with the efficiency of utilisation of a computer system.

1.3.2 Batch Monitors

Early computer systems were used in a one-program-at-a-time operating mode. Thus, a computer
operator would carry out a few actions in order to set up and initiate the processing of a job. These
actions could be as simple as flipping a few switches on the console, but very often consisted of
manually feeding in a few instructions in the computer memory which, when executed, would in-
itiate a language translator for operation. After this initial sequence, the processing of a job would
begin. At the end of the execution of the job, the operator would have to repeat the same steps
to initiate the processing of the next job.

This mode of operation made inefficient use of the processing capability of a computer because
a lot of time was wasted in the operator’s actions. Since human interaction time would be of the
order of seconds if not minutes, efficiency of utilisation critically depended on reducing human in-
tervention. This was achieved by designing an SP known as a batch monitor which would realise
processing of a set of user jobs without the need for operator interaction. The operator was now
required to initiate the functioning of the batch monitor. Once this was achieved, the batch monitor
would take over controlof the computer operations. It would initiate the processing of each job
in the batch in such a manner that at the end of its processing, control would return to
the batch monitor. It would then initiate the next job in an automatic fashion. After the last job
in the batch was processed, the batch monitor would terminate its own operation and control would
now come back to the computer operator in order to initiate the next action.

Automatic control of execution of a batch of jobs by the batch monitor improved efficiency of
ultilisation of the computer system. If a computer system shared by a group of users was used more
efficiently, then one would expect all the users to benefit equally. However, in batch processing

6 Introduction to System Software

a curious thing happened. While the efficiency of utilisation improved, a general user had to suffer -
long turn-around times. The turn-around time for a job is defined as the time elapsed from its sub-
mission at the computer centre to the time when its results are obtained. In the one-program-at-a-
time environment, submission of jobs and release of their results was generally done on an infor-
mal basis, so often the turn-around time for a job was only marginally larger than the time taken
for the job to be processed on the computer. With the introduction of batch processing, formal pro-
cedures had to be introduced to facilitate formation of batches with sufficient number of jobs in
them. For example, at some computer centres, all jobs submitted between 9 a.m. and 12 noon might
be included in the same batch. Further, in order to obtain still higher efficiency of utilisation, the
Jjobs forming a batch might be recorded on a faster Input Output (I0) medium like a magnetic tape
or a disk. The results of processing the batch might similarly be recorded on a magnetic tape or
a disk and later printed out on a printer, sorted out and then released to the users.

The turn-around time for a job in the batch processing mode thus depends on (i) the total pro-
cessing time of all the jobs in a batch and {(ii) the batch formation time as well as the printing of
output and release time. However, this mode of operation clearly improves the utilisation efficien-
cy and does not require a user to put in any extra effort besides introducing appropriate batch monitor
control cards in his program deck.

1.3.3 Multiprogramming Operating Systems

Batch monitor was the first system program devised to improve the utilisation efficiency. However,
given the architecture of early second generation machines; the scope of its efforts was restricted
simply to automating the transition from the processing of one job in the batch to the next. Around
this time the field of computer architecture made one significant advance in terms of the 10 (Input
Output) organisation of a computer. The concept of an IO channel was introduced in order to free
the CPU for more productive tasks. »

In the classical computer architecture, the IO instructions were executed the same way as all
the other instructions (arithmetic, logical, etc.) by the CPU. Thus, when an IO instruction was decod-
ed, the CPU generated appropriate control signals for the IO devices. The 10 devices now got busy
and performed their operations and at the end sent an end-of-operation signal to the CPU. The CPU
was idle from the moment of 10 initiation to IO completion. The channel concept (Fig. 1.1) freed .
the CPU from unnecessary idle times while the IO operation was in progress. The actual IO is now
performed as follows: The CPU executes a Start Input-Output instruction (SIO instruction of IBM
360/370), with the address of an IO device as the operand. When this instruction is executed, the
device address is passed on to the channel. The channel interrogates the device to see if it is available,
and sends an end-of-operation signal with an appropriate condition code (device available to perforni
operation, device busy, device non-existent, etc:) to the CPU. If the required device is available, the channel
obtains details of the IO operation to be performed from standard storage area and the 10 operation
is initiated. Since the channel has an independent path to/from the main storage of the computer,
the CPU isnot required during the IO operation. Thus, after the initial selection and interrogation
of the device, the CPU is free to do some useful computations until the IO operation terminates.
The end of an 10 operation is brought to the notice of the CPU (generally through an interrupt) so
that it can initiate another IO operation, if necessary.

In spite of the capability of such computer architectures to support computations and IO concur-
rently, it was soon found that individual programs could not effectively exploit this concurrency.
The main reason was the lack of data independence between various parts of the program. For
example, consider a program which reads a certain amount of data and then processes it. Now,
the CPU cannot simply initiate IO for a data card (let us say the first data card) and continue perfor-
ming computations, since the values of variables taking part in the'computauon have to be read
in first from cards. Since the processing step requires the same variables (or storage areas) which
are being given values through the IO operation, both IO and processing cannot go on simultaneously.

Introduction 7

In effect, unless all the required data is read in, no processing can be done. In other words, the
CPU would still remain idle during IO.

Since concurrent utilisation of the CPU and the channels requires data independence, and since
data independence is difficult to ensure within a program, the stratagem used in practice is to locate
two (or more) independent programs within the memory of the computer. While IO is being per-
formed for one program, the CPU can perform useful computations for another program. Thus,
two or more programs can be executed in an interleaved fashion so as to keep the CPU (and also
possibly the IO subsystem) busy most of the time. Hence the term multiprogramming.

In order to obtain the best possible CPU utilisation, it is necessary that a proper mix of programs
be multiprogrammed. For example, if all programs being multiprogrammed have a:lot of 10 re-
quirements and involve very little processing, again the CPU utilisation will not be very high. Apart
from the program mix, it is also necessary to switch from the execution of one program to that
of another in a systematic and judicious manner. All these aspects of control are exercised by an
SP which is permanently resident in the main storage of the computer. We will refer to this control
program as a supervisor. (It should be noted here that unfortunately there is no standardisation in
the terminology used for such control programs. Often the terms executive or monitor are also used
to mean the same thing.) A multiprogramming operating system is a collection of SPs including
the multiprogramming supervisor and any other programs required by the supervisor from time
to time. The various control functions performed by the supervisor and their implementation details
are discussed in Chapter 6.

1.3.4 Time-Sharing Operating Systems

.
Multiprogramming improves efficiency of system utilisation. However, this does not yield any direct
benefit to the user population as the turn-around time, which is the primary quantification of user
service, does not necessarily improve. For example, in the interests of further improvement in utilisa-
tion efficiency, the various programs being multiprogrammed would not be initiated as single jobs
by a computer operator. Instead, they would generally be initiated as batches of jobs. Thus, the
user would still suffer from long turn-around times inherent in batch processing.

From a user's viewpoint, fast turn-around for his jobs is desirable. This would facilitate faster
program development since errors detected in one run of the program can be corrected immmediate-
ly and the program resubmitted for another test run. As a matter of fact, the best conceivable ser-
vice that a user would expect from a computer is that of instant turn-arounds. This requirement
has given rise to the concept of interactive computing.

In an interactive computing environment, a user sits at a video-terminal and feeds his input to
the computer by keying in a few characters or complete statements. These are displayedon the
screen as well as transmitted to the computer. The computer’s response is also similarly displayed.
Depending on the translating system available at the computer installation, thé user may have to
feed in his entire program before attempting to run it, or in certain cases he may be able to com-
municate with the translator on a statement-by-statement basis. In the latter case, the translator
would process a statement as soon as it is submitted and indicate errors, if any. The user can now
correct an erroneous statement or key in the next statement. This act of keying in of a processing
request by the programmer followed by its appropriate fulfilment by the computer system is known
as an interaction and the time taken by the computer to respond-to the processing request is known
as the response time.

In such an interactive environment, the user would evaluate the computing services in terms
of the response times maintained by the system. The easiest way of ensuring good response times
seems to be to connect only one terminal to the computer systenrand run only one programmer's
job on the system. But this is obviously inefficient. A better method would be to have a-number

8 Introduction to System Software

of terminals connected to the system and to process the requests made by various programmers,
in such a manner that all of them get reasonably good response times. This is the strategy used
in practice, and for this reason operating systems using such techniques are known as Time:Sharing
Operating Systems. A typical time-sharing operating system would process the requests of all ter-
minals in a circular fashion over and over again so as to give fair response times to all the terminal
users.

When we compare the time-sharing operating system with simple batch processing and
multiprogramming systems we find that its motivation is the exact opposite of the other two. User
service is given a higher weightage than aspects of utilisation efficiency. As a matter of fact, it turns
out that time-sharing actually degrades the utilisation efficiency because of the processor time con-
sumed by the OS itself for various housekeeping jobs like switching from the execution of one pro-
gram tothe next, etc. For this reason, in practice, computer systems are rarely operated in the
pure time-shared mode. Instead, apart from time-sharing, the OS would also support batch pro-
cessing, etc. in a multiprogramming environment. In a later section of this Chapter, such an
operating system is discussed.

1.3.6 Other System Programs

In this Section we.have traced the evolution of some SPs, mainly translators and operating systems,
to illustrate how the two conflicting aspects of motivation for the development of SPs are weighed
against each other and how the balance of these weights shifts along with a shift in the perspec-
tives of a situation. It was not the intention of this section to exhaustively list out all the SPs that
exist in a typical computer system and trace their evolution. Thus SPs like librarians, editors, input-
output control systems (IOCS), file systems, etc. have not even been mentioned. Various components
of operating systems like storage manager, processor manager, job accounting package, etc. have
also not been identified or discussed separately. It is intended to introduce such SPs at appropriate
points in the discussion in this and later Chapters.

1.4 The Model of a Computer System

Throughout this book, we will discuss the working principles and design aspects of various SPs.
For the sake of generality, we will base these discussions on the model of a typical computer system
which exhibits broad architectural features found in most éomputer systems. The model is defin-
ed at two levels—(i) the machine model depicting the hardware features, and (ii) the operating system
model depicting the architectural features of its OS. Since the intention in introducing these models
is simply to specify the hardware and software features whose conceptual awareness is essential
for the discussion in subsequent chapters, particular details of the architecture are being omitted
for the present.

1.4.1 The Machine

Figure 1.1 shows the machine model, illustrating the fundamental organisational details of the
machine, the various component units and their interconnections. No distinction is made between
data and control paths. The important components of the model are the storage unit, the CPU, and
the 10 subsystem consisting of 10 processors or IO channels and IO devices, etc. A brief description
at the tunctional level of these components is given below. Detailed description at the functional,
design and implementation levels can be found in the texts mentioned in the bibliography.

