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Preface

Predictions are a delicate matter. The I-told-you-this-was-going-to-happen ones
are reliable, but not very helpful, as they only achieve credibility post factum.
Similarly uninteresting are those of the shrowded-in-mystery, match-it-all type.
Finally, when a respected person has both a vision and courage to state it, the
future could prove him right, yet realize his dream with an unexpected twist. A
solitary multimillionaire’s round trip to an ageing orbital station is far from the
crowds of space tourists predicted by A.C. Clark. However, when he said there
would be hotels in space by 2001, he was spot on, despite the modest beginning.

We also met the year 2001 magical milestone to the future without being sur-
rounded by either Arthur C. Clark’s intelligent computers or their moody cousins
of Douglas Adams’s cut. However, one of the many small steps in this direction
was made when the 1st Symposium on Adaptive Agents and Multi-agent Sys-
tems (AAMAS) was organized in that year. In front of you is a collection of
selected papers from the 3rd and 4th AAMAS symposia, which persisted in the
goals set in 2001, namely, to increase awareness and interest in adaptive agent
research, encourage collaboration between machine learning and agent system
experts, and give a representative overview of current research in the area of
adaptive agents.

Recent years have seen an increasing interest, and the beginning of consol-
idation of the European research community in the field. Still, there are many
major challenges left to tackle. While our understanding of learning agents and
multi-agent systems has advanced significantly, most applications are still on
simple scaled-down domains, and, in fact, most methods do not scale up to the
‘real world. This, amongst others, is a major obstacle to bring learning agent
technologies to commercial applications. Stay tuned for new developments in
the — hopefully near — future.

The first book on the subject (Springer LNAI, vol. 2636), largely based on
contributions to AAMAS and AAMAS-2, was published in 2002. It is with delight
that we present another volume of articles in this emerging multidisciplinary
area encompassing computer science, software engineering, biology, as well as
the cognitive and social sciences.

Our thanks go to the symposium keynote speakers, Jirgen Schmidhuber and
Sorin Solomon, for writing invited papers for this volume, the members of the
symposium Program Committee for fast and thorough reviews, AgentLink II
& TII Networks of Excellence for co-sponsoring the symposium, the Society for
the Study of Artificial Intelligence and the Simulation of Behaviour (SSAISB)
for providing outstanding help in the organization of this event, and, of course,
special thanks to the authors without whose high-quality contributions there
would not be a book to begin with.

December 2004 Daniel Kudenko, Dimitar Kazakov, Eduardo Alonso
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Godel Machines: Towards a Technical Justification
of Consciousness

Jiirgen Schmidhuber

IDSIA, Galleria 2, 6928 Manno (Lugano), Switzerland
TU Munich, Boltzmannstr. 3, 85748 Garching, Miinchen, Germany
juergen@idsia.ch
http://www.idsia.ch/~juergen

Abstract. The growing literature on consciousness does not provide a formal
demonstration of the usefulness of consciousness. Here we point out that the
recently formulated Godel machines may provide just such a technical justifi-
cation. They are the first mathematically rigorous, general, fully self-referential,
self-improving, optimally efficient problem solvers, “conscious” or “self-aware”
in the sense that their entire behavior is open to introspection, and modifiable.
A Godel machine is a computer that rewrites any part of its own initial code as
soon as it finds a proof that the rewrite is useful, where the problem-dependent
utility function, the hardware, and the entire initial code are described by axioms
encoded in an initial asymptotically optimal proof searcher which is also part of
the initial code. This type of total self-reference is precisely the reason for the
Godel machine’s optimality as a general problem solver: any self-rewrite is glob-
ally optimal-—no local maxima!—since the code first had to prove that it is not
useful to continue the proof search for alternative self-rewrites.

1 Introduction and Outline

In recent years the topic of consciousness has gained some credibility as a serious
research issue, at least in philosophy and neuroscience, e.g., [8]. However, there is a lack
of technical justifications of consciousness: so far no one has shown that consciousness is
really useful for solving problems, even though problem solving is considered of central
importance in philosophy [29].

Our fully self-referential Godel machine [43,45] may be viewed as providing just
such a technical justification. It is “self-aware” or “conscious” in the sense that the
algorithm determining its behavior is completely open to self-inspection, and modifiable
in a very general (but computable) way. It can ‘step outside of itself” [13] by executing
self-changes that are provably good, where the mechanism for generating the proofs also
is part of the initial code and thus subject to analysis and change. We will see that this
type of total self-reference makes the Godel machine an optimal general problem solver,
in the sense of Global Optimality Theorem 1, to be discussed in Section 4.

Outline. Section 2 presents basic concepts of Godel machines, relations to the most
relevant previous work, and limitations. Section 3 presents the essential details of a
self-referential axiomatic system of one particular Godel machine, Section 4 the Global

D. Kudenko et al. (Eds.): Adaptive Agents and MAS II, LNAI 3394, pp. 1-23, 2005.
(© Springer-Verlag Berlin Heidelberg 2005



2 J. Schmidhuber

Optimality Theorem 1, and Section 5 an O()-optimal (Theorem 2) initial proof searcher.
Section 6 provides examples and additional relations to previous work, and lists answers
to several frequently asked questions about Godel machines. Section 7 wraps up.

2 Basic Overview / Most Relevant Previous Work / Limitations

All traditional algorithms for problem solving are hardwired. Some are designed to
improve some limited type of policy through experience [19], but are not part of the
modifiable policy, and cannot improve themselves in a theoretically sound way. Humans
are needed to create new / better problem solving algorithms and to prove their usefulness
under appropriate assumptions.

Here we eliminate the restrictive need for human effort in the most general way
possible, leaving all the work including the proof search to a system that can rewrite and
improve itself in arbitrary computable ways and in a most efficient fashion. To attack
this “Grand Problem of Artificial Intelligence,” we introduce a novel class of optimal,
fully self-referential [10] general problem solvers called Godel machines [43,44].! They
are universal problem solving systems that interact with some (partially observable)
environment and can in principle modify themselves without essential limits apart from
the limits of computability. Their initial algorithm is not hardwired; it can completely
rewrite itself, but only if a proof searcher embedded within the initial algorithm can first
prove that the rewrite is useful, given a formalized utility function reflecting computation
time and expected future success (e.g., rewards). We will see that self-rewrites due to
this approach are actually globally optimal (Theorem 1, Section 4), relative to Godel’s
well-known fundamental restrictions of provability [10]. These restrictions should not
worry us; if there is no proof of some self-rewrite’s utility, then humans cannot do much
either.

The initial proof searcher is O()-optimal (has an optimal order of complexity) in
the sense of Theorem 2, Section 5. Unlike hardwired systems such as Hutter’s [15, 16]
(Section 2) and Levin’s [23, 24], however, a Godel machine can in principle speed up any
part of its initial software, including its proof searcher, to meet arbitrary formalizable
notions of optimality beyond those expressible in the O()-notation. Our approach yields
the first theoretically sound, fully self-referential, optimal, general problem solvers.

2.1  Set-Up and Formal Goal

Many traditional problems of computer science require just one problem-defining input
at the beginning of the problem solving process. For example, the initial input may be a
large integer, and the goal may be to factorize it. In what follows, however, we will also
consider the more general case where the problem solution requires interaction with a
dynamic, initially unknown environment that produces a continual stream of inputs and
feedback signals, such as in autonomous robot control tasks, where the goal may be

! Or ‘Goedel machine’, to avoid the Umlaut. But ‘Godel machine’ would not be quite correct. Not
to be confused with what Penrose calls, in a different context, ‘Gddel’s putative theorem-proving
machine’ [28]!
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to maximize expected cumulative future reward [19]. This may require the solution of
essentially arbitrary problems (examples in Section 6.1 formulate traditional problems
as special cases).

Our hardware (e.g., a universal or space-bounded Turing machine [55] or the abstract
model of a personal computer) has a single life which consists of discrete cycles or time
steps t = 1,2,.... Its total lifetime 7" may or may not be known in advance. In what
follows, the value of any time-varying variable () at time ¢ will be denoted by Q(t).

During each cycle our hardware executes an elementary operation which affects its
variable state s € S C B* (where B* is the set of possible bitstrings over the binary
alphabet B = {0,1}) and possibly also the variable environmental state Env € £
(here we need not yet specify the problem-dependent set £). There is a hardwired state
transition function F' : S x £ — S.Fort > 1, s(t) = F(s(t — 1), Env(t — 1)) is the
state at a point where the hardware operation of cycle ¢t — 1 is finished, but the one of
t has not started yet. Env(t) may depend on past output actions encoded in s(t — 1)
and is simultaneously updated or (probabilistically) computed by the possibly reactive
environment.

In order to talk conveniently about programs and data, we will often attach names to
certain string variables encoded as components or substrings of s. Of particular interest
are the three variables called time, x, y, and p:

1. At time t, variable time holds a unique binary representation of ¢. We initialize
time(1) = ‘1°, the bitstring consisting only of a one. The hardware increments
time from one cycle to the next. This requires at most O(log t) and on average only
O(1) computational steps.

2. Variable x holds the inputs form the environment to the Godel machine. For ¢ > 1,
z(t) may differ from z(t — 1) only if a program running on the Gédel machine has
executed a special input-requesting instruction at time ¢t — 1. Generally speaking,
the delays between successive inputs should be sufficiently large so that programs
can perform certain elementary computations on an input, such as copying it into
internal storage (a reserved part of s) before the next input arrives.

3. Variable y holds the outputs of the Gédel machine. y(t) is the output bitstring which
may subsequently influence the environment, where y(1) = ‘0’ by default. For ex-
ample, y(t) could be interpreted as a control signal for an environment-manipulating
robot whose actions may have an effect on future inputs.

4. p(1)istheinitial software: a program implementing the original (sub-optimal) policy
for interacting with the environment, represented as a substring e(1) of p(1), plus
the original policy for searching proofs. Details will be discussed below.

At any given time ¢ (1 <t < T') the goal is to maximize future success or utility. A
typical “value to go” utility function is of the form u(s, Env) : S x £ — R, where R
is the set of real numbers:

E,.(T|s,Env)
u(s, Env) = E, Z (1) | s,Env], €))

T=time

where r(t) is areal-valued reward input (encoded within s(t)) at time t, E,(- | -) denotes
the conditional expectation operator with respect to some possibly unknown distribution
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wfromaset M of possible distributions (M reflects whatever is known about the possibly
probabilistic reactions of the environment), and the above-mentioned time = time(s)
is a function of state s which uniquely identifies the current cycle. Note that we take
into account the possibility of extending the expected lifespan E, (T | s, Env) through
appropriate actions.

Alternative formalizable utility functions could favor improvement of worst case
instead of expected future performance, or higher reward intake per time interval etc.
Clearly, most classic problems of computer science can be formulated in this framework—
see examples in Section 6.1.

2.2 Basic Idea of Godel Machine

Our machine becomes a self-referential [10] Godel machine by loading it with a partic-
ular form of machine-dependent, self-modifying code p. The initial code p(1) at time
step 1 includes a (typically sub-optimal) problem solving subroutine e(1) for interacting
with the environment, such as any traditional reinforcement learning algorithm [19], and
a general proof searcher subroutine (Section 5) that systematically makes pairs (switch-
prog, proof) (variable substrings of s) until it finds a proof of a target theorem which
essentially states: ‘the immediate rewrite of p through current program switchprog on the
given machine implies higher utility than leaving p as is’. Then it executes switchprog,
which may completely rewrite p, including the proof searcher. Section 3 will explain
details of the necessary initial axiomatic system .A encoded in p(1). Compare Figure 1.

The Global Optimality Theorem (Theorem 1, Section 4) shows this self-improve-
ment strategy is not greedy: since the utility of ‘leaving p as is’ implicitly evaluates all
possible alternative switchprogs which an unmodified p might find later, we obtain a
globally optimal self-change—the current switchprog represents the best of all possible
relevant self-changes, relative to the given resource limitations and initial proof search
strategy.

2.3 Proof Techniques and an O()-Optimal Initial Proof Searcher

Section 5 will present an O()-optimal initialization of the proof searcher, that is, one
with an optimal order of complexity (Theorem 2). Still, there will remain a lot of room
for self-improvement hidden by the O()-notation. The searcher uses an online extension
of Universal Search [23,24] to systematically test online proof techniques, which are
proof-generating programs that may read parts of state s (similarly, mathematicians are
often more interested in proof techniques than in theorems). To prove target theorems
as above, proof techniques may invoke special instructions for generating axioms and
applying inference rules to prolong the current proof by theorems. Here an axiomatic
system A encoded in p(1) includes axioms describing (a) how any instruction invoked
by a program running on the given hardware will change the machine’s state s (including
instruction pointers etc.) from one step to the next (such that proof techniques can reason
about the effects of any program including the proof searcher), (b) the initial program
p(1) itself (Section 3 will show that this is possible without introducing circularity),
(c) stochastic environmental properties, (d) the formal utility function u, e.g., equation
(1), which automatically takes into account computational costs of all actions including
proof search.
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Fig. 1. Storage snapshot of a not yet self-improved example Go6del machine, with the initial
software still intact. See text for details

2.4 Relation to Hutter’s Previous Work

Here we will briefly review the most closely related previous work, and point out the
main novelties of the Godel machine. More relations to older approaches can be found
in Section 6.2.

Hutter’s non-self-referential but still O()-optimal ‘fastest’ algorithm for all well-
defined problems HSEARCH [16] uses a hardwired brute force proof searcher and ignores
the costs of proof search. Assume discrete input/output domains X /Y, a formal problem
specification f : X — Y (say, a functional description of how integers are decomposed
into their prime factors), and a particular z € X (say, an integer to be factorized).
HSsEARCH orders all proofs of an appropriate axiomatic system by size to find programs
q that for all z € X provably compute f(z) within time bound t,(z). Simultaneously
it spends most of its time on executing the g with the best currently proven time bound
tq(x). It turns out that HSEARCH is as fast as the fastest algorithm that provably computes
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f(2) for all z € X, save for a constant factor smaller than 1 + € (arbitrary ¢ > 0) and
an f-specific but z-independent additive constant [16]. This constant may be enormous
though.

Hutter’s Aix1(t,1) [15] is related. In discrete cycle £ = 1,2, 3, ... of Aixi(z)’s life-
time, action y(k) results in perception (k) and reward r(k), where all quantities may
depend on the complete history. Using a universal computer such as a Turing machine,
Aixi(t,l) needs an initial offline setup phase (prior to interaction with the environment)
where it uses a hardwired brute force proof searcher to examine all proofs of length
at most L, filtering out those that identify programs (of maximal size [ and maximal
runtime ¢ per cycle) which not only could interact with the environment but which for all
possible interaction histories also correctly predict a lower bound of their own expected
future reward. In cycle k, Aixi(z,/) then runs all programs identified in the setup phase
(at most 2Y), finds the one with highest self-rating, and executes its corresponding action.
The problem-independent setup time (where almost all of the work is done) is O(L - 2%).
The online time per cycle is O(¢ - 2!). Both are constant but typically huge.

Advantages and Novelty of the Godel Machine. There are major differences between
the Godel machine and Hutter’s HSEARCH [16] and Aix1(z,1) [15], including:

1. The theorem provers of HSEARCH and AIxI(,/) are hardwired, non-self-referential,
unmodifiable meta-algorithms that cannot improve themselves. That is, they will
always suffer from the same huge constant slowdowns (typically > 101°9%) buried
in the O()-notation. But there is nothing in principle that prevents our truly self-
referential code from proving and exploiting drastic reductions of such constants,
in the best possible way that provably constitutes an improvement, if there is any.

2. The demonstration of the O()-optimality of HSEARCH and AIxI(t,l) depends on a
clever allocation of computation time to some of their unmodifiable meta-algorithms.
Our Global Optimality Theorem (Theorem 1, Section 4), however, is justified through
a quite different type of reasoning which indeed exploits and crucially depends on
the fact that there is no unmodifiable software at all, and that the proof searcher
itself is readable, modifiable, and can be improved. This is also the reason why its
self-improvements can be more than merely O()-optimal.

3. HSEARCH uses a “trick” of proving more than is necessary which also disappears in
the sometimes quite misleading O()-notation: it wastes time on finding programs
that provably compute f(z) for all z € X even when the current f(z)(z € X) is
the only object of interest. A Godel machine, however, needs to prove only what is
relevant to its goal formalized by u. For example, the general u of eq. (1) completely
ignores the limited concept of O()-optimality, but instead formalizes a stronger type
of optimality that does not ignore huge constants just because they are constant.

4. Both the Godel machine and A1xi(z,l) can maximize expected reward (HSEARCH
cannot). But the G6del machine is more flexible as we may plug in any type of
formalizable utility function (e.g., worst case reward), and unlike A1xi(t,{) it does
not require an enumerable environmental distribution.

Nevertheless, we may use A1x1(z,/) or HSEARCH or other less general methods to initialize
the substring e of p which is responsible for interaction with the environment. The Godel
machine will replace e(1) as soon as it finds a provably better strategy.



Godel Machines: Towards a Technical Justification of Consciousness 7

2.5 Limitations of Godel Machines

The fundamental limitations are closely related to those first identified by Godel’s cel-
ebrated paper on self-referential formulae [10]. Any formal system that encompasses
arithmetics (or ZFC etc) is either flawed or allows for unprovable but true statements.
Hence even a Godel machine with unlimited computational resources must ignore those
self-improvements whose effectiveness it cannot prove, e.g., for lack of sufficiently
powerful axioms in .A. In particular, one can construct pathological examples of envi-
ronments and utility functions that make it impossible for the machine to ever prove a
target theorem. Compare Blum’s speed-up theorem [3, 4] based on certain incomputable
predicates. Similarly, a realistic G6del machine with limited resources cannot profit
from self-improvements whose usefulness it cannot prove within its time and space
constraints.

Nevertheless, unlike previous methods, it can in principle exploit at least the provably
good speed-ups of any part of its initial software, including those parts responsible for

huge (but problem class-independent) slowdowns ignored by the earlier approaches
[15,16].

3 Essential Details of One Representative Godel Machine

Notation. Unless stated otherwise or obvious, throughout the paper newly introduced
variables and functions are assumed to cover the range implicit in the context. [(q)
denotes the number of bits in a bitstring g; g, the n-th bit of ¢; A the empty string (where
I(A) = 0); gmon = ANif m > n and gmgmy1 - - - gn Otherwise (where qo := qo.0 1= ).

Theorem proving requires an axiom scheme yielding an enumerable set of axioms of a
formal logic system A whose formulas and theorems are symbol strings over some finite
alphabet that may include traditional symbols of logic (such as —, A, =, (,),V,3,...,
¢1,¢2, ..., f1, f2,...), probability theory (such as E(-), the expectation operator), arith-
metics (+,—,/,=,>.,<,...), string manipulation (in particular, symbols for repre-
senting any part of state s at any time, such as s7.85(5555)). A proof is a sequence of
theorems, each either an axiom or inferred from previous theorems by applying one of
the inference rules such as modus ponens combined with unification, e.g., [9].

The remainder of this paper will omit standard knowledge to be found in any proof
theory textbook. Instead of listing all axioms of a particular A in a tedious fashion, we
will focus on the novel and critical details: how to overcome problems with self-reference
and how to deal with the potentially delicate online generation of proofs that talk about
and affect the currently running proof generator itself.

3.1  Proof Techniques

Brute force proof searchers (used in Hutter’s A1xi(z,/) and HSEARCH; see Section 2.4)
systematically generate all proofs in order of their sizes. To produce a certain proof, this
takes time exponential in proof size. Instead our O()-optimal p(1) will produce many
proofs with low algorithmic complexity [51, 21, 25] much more quickly. It systematically
tests (see Section 5) proof techniques written in universal language £ implemented within
p(1). For example, £ may be a variant of PROLOG [6] or the universal FORTH[27]-
inspired programming language used in recent work on optimal search [46]. A proof



