


DATA FLOW COMPUTING:
THEORY AND PRACTICE

edited by

John A. Sharp

Department of Mathematics
Computer Science
University of Wales
Swansea

United Kingdom

@ ABLEX PUBLISHING CORPORATION
NORWOOD, NEW JERSEY



Copyright © 1992 by Ablex Publishing Corporation

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopy-
ing, microfilming, recording, or otherwise, without permission of the publisher.

Printed in the United States of America

Library of Congress Cataloging-in-Publication Data

Data flow computing : theory and practice / edited by John A. Sharp.
p- cm.
Includes bibliographical references and index:
ISBN 0-89391-654-4
1. Computer architecture. 2. Data flow computing. 1. Sharp, J.
A. (John A.). 1955-
QA76.9.A73D38 1991
004.2'2—dc20 91-30622
CIP

Ablex Publishing Corporation
355 Chestnut St.
Norwood, NJ 07648



List of Authors

Makoto Amamiya, Department of Information Systems, Kyushu University,
Japan

Mark Anderson, Palomar Software Inc, USA .

Katsuhiko Asada, Department of Electronic Engineering, Osaka University,
Japan

Ed A. Ashcroft, Arizona State University, Tempe, USA

Eric Barszcz, NASA Ames Research Center, California, USA

Francine Berman, Department of Computer Science and Engineering, Univer-
sity of California at San Diego, USA

Laxmi N. Bhuyan, The Center for Advanced Computer Studies, University of
Southwestern Louisiana, Lafayette, USA

Lubomir Bic, Department of Information and Computer Science, University of
California at Irvine, USA

William W. Carlson, Department of Electrical and Computer Engineering, Uni-
versity of Wisconsin, Madison, USA

Thomas J. W. Clarke, Computer Laboratory, University of Cambridge, UK

Tony Faustini, Department of Computer Science, Arizona State University,
Tempe, USA

Jose A. B. Fortes, School of Electrical Engineering, Purdue University, Indiana,
USA

Jean-Luc Gaudiot, Department of Electrical Engineering Systems, University
of Southern California, Los Angeles, USA

Dipak Ghosal, Institute of Advanced Computer Studies, University of Mary-
land, USA

Janice Glasgow, Department of Computing and Information Science, Queen’s
University, Kingston, Canada

Jayantha Herath, George Mason University, Fairfax, Virginia, USA

Susantha Herath, Keio University, Yokohama, Japan

Jagan Jagganathan, SRI International, Menlo Park, USA

Shinji Komori, LSI R&D Laboratory, Mitshubishi Electric Corp., Itami,
Hyogo, Japan

G. H. MacEwen, Queen’s University, Kingston, Canada

Satoshi Matsumoto, VLSI Development Laboratory, Sharp Corporation, Tenri,
Nara, Japan



vi List of Authors

Souichi Miyata, VLSI Development Laboratory, Sharp Corporation, Tenri,
Nara, Japan

Walid Najjar, Department of Electrical Engineering Systems, University of
Southern California, Los Angeles, USA

Hiroaki Nishikawa, Department of Electronic Engineering, Osaka University,
Japan

Carlos Ruggerio, Instituto de Fisco and Quimica de S. Carlos, Brazil

Nobuo Saito, Keio University, Yokohama, Japan

John Sargeant, Department of Computer Science, University of Manchester,
UK

John A. Sharp, Department of Mathematics and Computer Science, University
of Wales, Swansea, UK

Kenji Shima, Product Development Laboratory, Mitshubishi Electric Corp.,
Amagasaki, Hyogo, Japan

D. B. Skillicorn, Oxford University, England; on leave from Queen’s Univer-
sity, Kingston, Canada

Vason P. Srini, Electronics Research Laboratory, University of California,
Berkeley, USA

Hiroaki Terada, Department of Electronic Engineering, Osaka University, Ja-
pan

Bill Wadge, Department of Computer Science, University of Victoria, Canada

Yuk Kui Wong, AT&T Network Systems, UK, Ltd.

Yoshinori Yamaguchi, Electrotechnical Laboratory, Niiharigun, Ibraki, Japan

Toshitsugu Yuba, Electrotechnical Laboratory, Niiharigun, Ibraki, Japan



Preface

This book contains a selection of chapters on the general subject of data flow
computing. A quick introduction to the subject, including a rough guide to the
terminology, is provided in Chapter 1. In Chapter 2 the introductory theme is
continued with a comparison of the various data flow computing models that
have been proposed.

We then begin to examine the whole process of program design and imple-
mentation, starting at the highest level. There are many design methodologies in
use, such as those attributed to Michael Jackson and Ed Yourdon, among others,
which claim to use a data flow approach. In Chapter 3 we examine the relation-
ship between these approaches and the data flow model introduced in Chapter 1.
The theme of how the data flow approach affects the programmer is continued in
Chapter 4, which discusses the relationship between data flow and both function-
al programming and logic programming.

Chapters 5 and 6 turn to the implementation of data flow programming ideas
on real hardware with comparisons of various data flow machines that have been
proposed. Assessing the performance of the alternatives is clearly an important
topic, and methods for doing so are discussed in Chapters 7 to 9.

How to improve the performance is the topic of the next series of contribu-
tions. We kick off with a discussion of multilevel execution in data flow architec-
tures in Chapter 10. The problem of removing unwanted tokens in data flow
computations is covered in Chapter 11. Chapter 12 sees a presentation of a model
for executing data flow programs which reduces some of the overload involved in
allowing tokens to drive the execution of individual operations. This is done by
identifying sequences of operations which cannot be done out of order. In Chap-
ter 13 ways of finding the best such sequences for allocation to processors are
discussed.

Many people regard finding as much parallelism as possible in programs as
the best way of achieving maximum speed-up. This is not always the case, and in
Chapter 14 the problems that occur when we have too much potential parallelism
are studied.

In Chapter 15 we take a look at various aspects of the traditional static data
flow model with reference in particular to handling loop structures.

Next we have the first of a series of contributions describing specific computer
architectures. Reduced instruction set computers are very much in vogue at the
moment, and Chapter 16 shows how these ideas may be combined with the data

vii



viii Preface

flow approach to computing. The Japanese approach is reflected in Chapters 17
and 18 with a discussion of a one-chip, data-driven processor, and a graph
reduction model.

The aim of parallelism is often considered to be merely to get increased
throughput. However, parallel processing is a useful way of increasing reliability
by computing the same result a number of times in parallel. The possibility of
using the data flow approach to achieve fault-tolerant parallel processing is the
subject of Chapter 19.

Chapters 20 and 21 take a slightly wider definition of data flow than is
commonly accepted with an introduction to a variation on the data flow theme
termed intensional programming and a discussion of the syntax, semantics, and
applications of operator nets.

The final chapter consists of a very personal view of where research into data
flow might be heading, together with a brief survey of some of the work around
the world that is not directly represented by papers in this volume.

I would like to take this opportunity to thank all the authors who agreed to
contribute to this book. Thanks are also due to Ablex Publishing Corp. for
suggesting that I might like to put together a collection of research papers on data
flow. I apologize profusely to all concerned for the length of time it has taken for
this volume to actually be published. I could try to lay the blame at the door of
the various contributors, but the unfortunate truth is that I have been rather lax in
chasing papers and actually getting round to the task of putting it all together.
Despite the delays I hope that this book will prove a valuable source of ideas for
all working in and around the data flow area. -

Thanks are due to the Institute of Electrical and Electronic Engineers for
permission to reprint the papers by Vason Srini as Chapters 5 and 19 and Chapter
17 by Hiroaki Terada et al. I would also to thank Springer-Verlag for permission
to reprint the paper by Thomas Clarke as Chapter 16.

As editor I must take final responsibility for any errors or omissions in the
chapters that follow. My earnest hope is that I have not introduced too many
errors in trying to correct the few minor typographical ones in the contributors’
original manuscripts.

John A. Sharp



Table of Contents

10

11

List of Authors
Preface

A Brief Introduction to Data Flow
John A. Sharp

Comparison of Data Flow Computing Models
J. Herath, Y. Yamaguchi, K. Toda, R. Mattingley, N. Saito,
and T. Yuba

A Specification and Design Methodology Based on
Data Flow Principles
Y.K. Wong and J.A. Sharp

Functional and Logic Languages in Dataflow Computing
S. Herath, Y. Yamaguchi, R. Mattingley, J. Herath, N. Saito,
and T. Yuba

An Architectural Comparison of Dataflow Systems
Vason P. Srini

Static and Dynamic Dataflow Computing Machines
K. Toda, S. Herath, Y. Yamaguchi, J. Herath, N. Saito,
and T. Yuba

Performance Evaluation of Dataflow Computers
Dipak Ghosa and Laxmi N. Bhuyan

COSMIC: A Model for Multiprocessor Performance Analysis
William W. Carlson and Jose A.B. Fortes

Performance Evaluation Using the EM-3
Y. Yamaguchi, K. Toda, J. Herath, S. Herath, N. Saito,
and T. Yuba

Macro Data-Flow Architecture
Walid Najjar and Jean-Luc Gaudiot

Removing Useless Tokens from a Dataflow Computation
Mark Anderson and Francine Berman

vii

16

37

80

105

144

158

211

261

276

296



iv

12

13

14

15

16

17

18

19

20

21

22

Table of Contents

A Process-Oriented Model for Efficient Execution
of Dataflow Programs
Lubomir Bic

Processor Allocation Strategies for Data Flow Programs
John A. Sharp

Control of Parallelism in the Manchester Dataflow Machine
John Sargeant and Carlos A. Ruggerio

New Loop Control Structures for Static Data Flow
Eric Barszcz

The D-RISC—An Architecture for use in Multiprocessors
T.J.W. Clarke

VLSI Design of a One-Chip Data-Driven Processor: Q-v1

H. Terada, H. Nishikawa, K. Asada, S. Matsumoto, S. Miyata,

S. Komori, and K. Shima

A New Parallel Graph Reduction Model and its
Machine Architecture
Makoto Amamiya

A Fault-Tolerant Dataflow System
Vason P. Srini

Intensional Programming and Dataflow
A.A. Faustini and W.W. Wadge

Syntax, Semantics, and Applications of Operator Nets
E.A. Ashcroft, J.1I. Glasgow, J. Jagganathan, G.H. MacEwen,
and D .B. Skillicorn

Concluding Remarks
John A. Sharp

A Data Flow Bibliography
John A. Sharp

Author Index
Subject Index

336

352

375

393

408

427

445

465

493

512

537

547

555
560



' >

A Brief Introduction
to Data Flow

John A Sharp

The purpose of this chapter is to provide a brief introduction to the field of data
Sflow computing as discussed in this book. In doing so I will attempt to clarify some
of the terminology used which inevitably varies between different researchers. The
most obvious difference is in fact the very name of the field. Some workers (myself
included) use the two word phrase data flow, while many others (including the
majority of contributors to this volume) concatenate the phrase into one word
dataflow. In editing the volume I considered adopting one convention throughout,
but in the end I decided to leave well enough alone, and hope that a few footnotes
would suffice to avoid too much confusion.

It must be remembered that the chapters have been prepared in isolation, so that
there is inevitably a fair amount of duplication of introductory material. I felt that it
would be unwise to attempt to remove this, not only as different workers use slightly
different terminology, but also since I expect that many people will be tempted to
dip in to the book and read only selected contributions. Thus it is not unreasonable
to expect each chapter to stand alone.

1.1 MOTIVATION

In the past few years there has been an increasing interest in data flow program-
ming techniques. This interest has been motivated partly by the rapid advances in
technology (and the needs for distributed processing techniques), partly by a
desire for faster throughput by applying parallel processing techniques, and
partly by a search for a programming tool that is closer to the problem-solving
methods which people naturally adopt than are current programming languages.
Current languages are often referred to as problem oriented, but their design has
been strongly influenced by the design of the computers that they are used with
and thus are still to a certain extent machine oriented.

With the advent of the microprocessor and the ever-advancing technology of
integrated circuits it is becoming increasingly obvious that we need to break



2 Sharp

away from the straight-jacket of the conventional approach to computing. The
principles upon which it has been based are becoming less and less realistic in the
light of present day knowledge. One obvious illustration of the inadequacy of the
conventional approach is the way in which millions of memory cells are associ-
ated with only one processor. The same technology is used to develop both
processors and memory circuits, yet the processor is being efficiently utilized and
is in constant use, whereas memory cells are sitting idle for most of the time, and
being grossly under utilized. We are not proposing that we should use memory
cells merely to increase some theoretical utilization measure, but rather indicat-
ing that there is clearly a possibility that, by using the memory available more
efficiently, we may either be able to run programs faster or execute larger pro-
grams with the same resources.

Although there have been earlier attempts to break away from the traditional
approach, none have been totally successful in achieving popular support and
also they have nearly always assumed that any language implementation would
be based on a single sequential processor.

The so-called software crisis has led many eminent computer scientists to call
for a more structured approach to the design of programs. This is another reason
for us to rethink our whole approach to programming in the light of current
technology. The data flow approach discussed in this book is an approach which
provides an attractive alternative for the solution of the above problems.

1.2 THE BASIC IDEAS

In order to do anything useful with a computer system, we must be able to
specify what operations we want to be carried out. This usually implies that a
program needs to be written. Exceptions to this are dedicated systems that are
designed to implement a limited range of functions. Even then the designer of the
system has had to specify a form of program for the system to execute, either
permanently stored in memory or hard-wired into the control circuitry of the
machine itself.

In specifying the operations to be done, we make assumptions about what
primitive operations are available and also about how they are carried out. In
other words we have in mind a picture of how the computations we are speci-
fying will be executed. This picture of how things are done is referred to as a
model of computing. Programmers are not always aware that this is what they are
doing, since any programming language automatically provides us with a model
of computing. This model may be an abstraction of the physical processes
involved in the operation of computer hardware. Conventional programming
languages nearly all assume the existence of a primitive set of arithmetic opera-
tions (add, multiply, etc.). They also assume that these operations are carried out
sequentially on data stored in some form of memory device. Alternatively, the



Introduction 3

model may be a more formal one, developed using mathematical theory, which is
totally independent of hardware operation. Lisp uses a formal model of comput-
ing that is less hardware dependent, but which still assumes that it will be
implemented on a traditional digital computer.

Most existing programming languages were designed for use on computers
based on John von Neumann’s original concept. This is why they implicitly take
as their model of computing the traditional execution cycle (fetch; execute; store)
proposed by von Neumann and adopted in virtually all digital computers since.
This model of computing is referred to both as the von Neumann model and the
control flow model. ,

1.3 SOME TERMINOLOGY

Our aim in this chapter is to briefly introduce the model of computing known as
the data flow model. In order to do so, let us introduce some terminology. Some
of the definitions given will be rather imprecise, but they will be adequate to give
the reader a flavor and more precise definitions may be found in later chapters.

A program may be defined as the specification of a set of operations that are
required in order to earry out some task.

Examples of the sort of operations we are talking about are conventional
machine operations (such as add, subtract, etc.).

Two aspects of this definition of a program should be emphasized.

1. No ordering of the operations is implied.
2. Not all operations will be executed for all sets of input data.

The subset of operations that are executed given a particular set of input data
defines a computation.

Two ordering conventions can be defined. The control flow ordering is based
on the idea of a temporal sequence of operations. The data flow ordering, on the
other hand, is based on the need for data.

A data flow program is one in which the ordering of operations is not spec-
ified by the programmer, but is that implied by the data interdependencies.

A control flow program is one in which there is a total ordering of operations
specified by the programmer.

Hence:

A data flow computation is one in which the operations are executed in an
order determined by the data interdependencies and the availability of resources.

A control flow computation is one in which the operations are executed in an
order predetermined by a control convention, used by the programmer.

Two varieties of data flow computation can be distinguished.



4 Sharp

1. data-driven computations in which operations are executed in an order deter-
mined by the availability of input data.
and

2. demand-driven computations in which operations are executed in an order
determined by the requirements for data.

The data flow approach is often associated solely with the use of data-driven
computations. In this book we have taken a rather more liberal line and some of
the contributors include both data-driven and demand-driven execution strat-
egies.

The notion of a computation is such that the same set of operations are carried
out whenever the computation is executed. With a program we expect a different
set of operations to be carried out, depending upon the input data. A program
thus represents a set of computations. In order to decide which operations are to
be carried out, we need to introduce some sort of run-time data-dependent
decision mechanism. It is in the set of such mechanisms introduced that the
different notations used by various researchers tend to differ most (provided they
accept the basic data-driven model).

1.4 AN OVERVIEW OF THE DATA FLOW MODEL

Data flow research has been proceeding now since the late 1960s, with the first
paper being, as far as I am aware, by Adams [Ada70]. This chapter is in fact
based on Adams’s doctoral thesis, which was published in 1968 [Ada68]. Most
people have been introduced to data flow through the work at MIT, and in
particular the work of Jack Dennis [Den74]. This approach may be regarded as
an example of the classic, data-driven data flow model.

The classic way of representing computations in the data flow model is based
on a graphical notation for programs with nodes representing operations, and
arcs representing data dependencies.

Four early notations are presented in [Ada70], [Den74], [Rum77], and
[Kos73]. Most subsequent work has been based on Dennis’s notation [Den74],
but in passing we will mention some of the features included in the other models.

1.4.1 Basic Nodes for Computations

In order to represent simple computations we require three basic nodes: a source
node or constant generator to introduce constant values, some sort of copy or
duplicate node in order to replicate values, and a set of operator or function
nodes. The set of primitive nodes introduced is usually roughly equivalent to the



Introduction 5

Source actor or node Data actor or function node

(generates data value n)

/
e e ]

~

\A

Data link
(allows for multiple copies
of data values)

(applies function f to inputs)

Control link
(allows for multiple copies
of boolean values)

Figure 1.l1. Primitive nodes in Dennis’s notation.

instruction set of a conventional machine. Dennis’s notation for representing
these primitives is summarized in Figure 1.1.

1.4.2 Run-time Data Dependent Decision Mechanisms

In order to represent programs additional nodes capable of directing values along
selected paths are required. Dennis [Den74] introduces two sorts of nodes (see
Figure 1.2): the merge node, where the output token placed on the output arc is
selected by the value (true or false) of the token on the control input, and T & F
Gates, where an output token (of value equal to the input token) is placed on the
output arc if the value of the control token is true (for a T-gate) or false (for an



6 Sharp

Q /Data Inputs
Control input O———OC T F )

(@ Output

Data input Data input

Control input Control input

(b) Output Output
Figure 1.2. Nodes for run-time data-dependent decisions in Dennis’s notation.
(a) The merge node. Which input arc the output token is taken from depends
upon the value (true or false) of the token on the control input. (b) T- and
F-gates. An output token (of value equal to the input token) is placed on the
output arc if the value of the control token is true (for a T-gate) or false (for an
F-gate).

F-gate). Otherwise the input and control tokens are both absorbed. Graphs repre-
senting familiar simple loop and conditional constructs of conventional program-
ming can now be constructed (see Figure 1.3).

Rumbaugh [Rum77] assumes that, to produce well-formed data flow graphs,
you must always use T & F gates and merge nodes in a controlled manner. This
assumption seems to be justified. He introduces two alternative control nodes
(Figure 1.4): the switch, where the input token is placed on the output arc
selected by the control input, and the merge, where it is the programmer’s
responsibility to ensure that only one input arrives at any one time. The input is
then placed on the output. The conditional and while-loop constructs given above
may also be programmed using Rumbaugh’s nodes (Figure 1.5). Note that it is no
longer necessary to have an initial token on an arc in the loop graph. It should be
noted that Rumbaugh’s nodes are more suited to expressing the above constructs,
but are not as general, or powerful (in some sense) as Dennis'’s.



Control input Q Data input

Figure 1.3a. A conditional construct.

Initial
data input

Initial FALSE control

Condition

Final value

Figure 1.3b. A while loop.



Control
nput

/ Data
al Jutputs

Possible Possible
‘noyt nput

Output

b)
Figure 1.4. Rumbaugh’s control nodes. (a) The
switch. The input token is placed on the output
are selected by the control input. (b) The merge.
It is the programmer’s responsibility to ensure
that only one input arrives at any one time. The
input is then placed on the output.

Adams [Ada70] also uses two sorts of nodes (Figure 1.6): select and route
(roughly equivalent to Dennis’s merge node), and conditional (and negative
conditional) route (roughly equivalent to Dennis’s T and F gates).

1.4.3 Synchronization .

Both MIT notations ([Den74], [Rum77]) insist on synchronizing the execution of
operations by having all inputs present before execution. On the other hand,



