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PREFACE

A finite-dimensional linear topology admits infinitely many
distinct geometric realizations, each obtained by choosing a parti-

cular norm. In the algebra of matrices it is natural to restrict

oneselves to norms that possess the ring property ||AB| < ||&[]]B]-
If matrices are treated as linear operators in a linear space E,
then upon endowing E with a norm one automatically endows the
algebra of matrices with a norm. The matrix norms arising in this
manner are called operator (alternatively, induced or subordinate)
norms. For a certain period of time they constituted the only

known class of matrix norms. Other examples were found only after

in 1963 Yu. I. Lyubich (and indepeﬁdently, in 1964, J. Stoer) cha-
racterized the operator norms as minimal elements of the pointwise
order structure on the set of all matrix norms. The indicated order
has been subsequently subject to a detailed study by G. R. Belitskii.
The most important result in this direction is the theorem asserting
that all automorphisms of the order structure in question are in a
certain sense inner. As a whole, a rather rich theory has been de-
veloped, an exposition of which is given in Chapters 3 and 4 of the
monograph.

Chapter 1 has mainly a preparatory role. Its first two sections
are purely introductory. However, beginning with §3, a number of re-
levant situations in which matrix norms are used are exhibited.

Chapter 2 makes a sufficiently thorough study of the boundary
spectrum of contractions. It relies to a considerable extent to a
combinatorial analysis that goes back to Frobeniué, but has been
elaborated in detail only after the publication of a note of Wielandt

(1950) dedicated to Frobenius' centennary. A new direction emerged
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in works of Ptak and his collaborators, who introduced, and also
computed in a number of instances the so-called critical exponents.
This area is even today far from being studied exhaustively. 1In
this monograph we indicate a number of other unsolved problems:
among the solved ones there undoubtedly are some that can constitute
a source of new problems.

We describe a variety of applications of matrix norms, not
only because of their importance, but also to illustrate the princi-
ple of "fitting a norm to a given situation". This principle, which
guides many applications of functional analysis, is particularly
convincing in the finite-dimensional setting, where the choice of a
norm is subject to no restrictions.

It is assumed that the reader is familiar with courses on 1li-
near algebra and calculus. Nevertheless, a number of facts from
linear algebra are presented in order to make the exposition more
accessible. With the more special aspects one can make acquaintance
in the books recommended in the list of references. A number of
brief comments on the literature are made at the end of the text.
Therein we do not mention however the authors of sufficiently ele-
mentary or known theorems (except for those that usually bear the

names of their authors).
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CHAPTER 1

OPERATORS IN FINITE-DIMENSIONAL
NORMED SPACES

§1. NORMS OF VECTORS, LINEAR FUNCTIONALS, AND LINEAR OPERATORS

We consider an n-dimensiocnal (with 0 < n < «) linear space
E (referred to as the ground or basdic space) over the field R
or € of real or, respectively, complex numbers. The notations
E and n for the ground space and its dimensions will be kept
fixed throughout the book. In studying questions that can be
treated without making distinction between the real and complex
case we shall denote the ground field by XK. As a rule, the ele-
ments of K (4cafans) will be denoted by lowercase Greek letters,
and the elements of the ground space E (vecfons) by lowercase
Roman letters. The maps E » K and E » E are called gunctionals
on E and, respectively, operators in E. Linear functionals and
operators are defined in the usual manner. The adjective "linear"
is omitted whenever the linearity is plain from the context. From
now on the standard language of linear algebra will be used without
superfluous explanations.

For the reader's convenience, we devote this section to the
classical definitions and facts connected with the notion of a

norm, in their finite-dimensional version.
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A functional v on
following properties:
1) vix) >0 (vx #
2)  v{ox) e lv(x)

3)

vix + y) < vix)

Immediate consequenc
la] =1
vixg - y) = |vix) - viy)|.

v(x) whenever

Let 1

Example.

put, for each vector

n
vx) = 1) |g P
p k=1
That the functional
inequality,

(1.1.

to the given basis. Lett

Ve(x) = max |g, |

1<k<n

In this limiting case (and also for

is obvious.

In the case p = 2
product
n —_
(x,y) = kzl E N
namely, V,(x) = {(x,x)}

an Annen phroduct (i.e., w
denoted (-,-),
(x,x) >0 V x # 0),
In this case the triangle
Tity

which is
then

| (x, )| <|Ix{l-lly] :

the meaning of the latter

known from analysis.

ORS IN NORMED SPACES Chap. 1
E 1is called a noam if it possesses the
0) (posdtivity) ;
(absolute homogenedlly) ;
+ v(y) (trdiangle inequality).
es of 1)~-3) are that v(0) = 0, v(ax) =
(in particular, v{(-x) = v(x)), and
<, Pick a basis €rreserey in E and
n
k=1 &%k -
p (1.1.1)
1) is a norm follows from the Minkowski
It is called the Zp—nonm relative
ing p » @ we obtain the £_-norm
(1.1.2)

P 1) the triangle inequality

the norm comes from the standard innen

(1.1.3)
1/2. Generally, if E 1is equipped with
ith a bilinear map E x E - K, usually
symmetric : (y,x) = (x,v), and positive :
the functional ||x]||= /{x,x) is a norm.

inequality follows from the Schwarz inequa-

(1.1.4)

is that the discriminant of the Hermitian
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quadratic form
(x,x)EE + (x,¥y)En + (y,x)nE + (y,y)nn = (Ex + ny,Ex + ny) > 0

is nonnegative.

A norm defined in the indicated manner by an inner product is
termed here a Euclidean nonrm.

Every norm Vv on E defines a metndic

d(x,y) = v(x - y) , (1.1.5)

which in turn defines a topology on E. This topoloegy on E does

not depend on the chodice 0§ the noam This is a consequence of

V.
the fact that any fwo nonms, v and Y, on E are equdivalent,

i.e., there exist constants a,8 > 0 such that
av(x) < J(x) < Bv(x)

for all x € E. To prove this is suffices to verify that any norm
V is equivalent with ‘the £ -norm v_

One of the inequalities needed to this end is obvious

n n
V() = () ge) < ) g Rle) < By (x) ,
= 1

k=1 k=
where B8 = Z;=l§(ek). From this estimate it follows that
[9(x) - V(y)| < Bd_(x,y) .

where d, is the metric associated with the norm v_ [d_ is some-
times referred to as the uniform metric (relative to the given basis
el,...,en)]. We see that the functional V¥ 1is continuous in the
topology defined by v_. Consider the restriction of U to the
"unit sphere" § = {x | v (x) = 1}. Since S is compact and
J]ls > 0, there is an o > 0 such that v (x) > o for all x € S.
Then Y(x) = av_(x) for all x € E, because for x # 0 the vector
{vw(x)}—lx belongs to S and consegquently satisfies the above
inequality.

The topology introduced above on E is called standand. It
is a Linean topology, i.e., relative to it the operations of addi-
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tion and multiplication by a scalar are jointly continuous {the
ground field K 1is endowed with the standard topology). Thus, E
is a topological linear space. Notice that the convergence of a
sequence {xn}f to a vector x 1s equivalent to the coordinate-
wise convergence in some basis, since the latter is equivalent to
the convergence in the metric d_. From this remark it is plain
that the space E 1is complete.

If E 1is endowed with some fixed norm, then it is called a
noamed space or a Minkowsk{ space, and the singled-out norm is de-
noted by || |

A space E endowed with a fixed inner product is called a

.

Euclidean space. It is automatically normed. A normed space is
termed Eucldidean if its norm is Euclidean.

The main geometric figures in a normed space E are the open
unit ball D = {x | ||x]| <1}, the closed unit bald 7T = {x |
llx]l < 1} , and the unit sphere s = {x | ||x||=1}. The balls D
and 7 are absolutely convex, i.e., convex and invariant under
multiplication by any scalar A with |A| = 1. Also, D and S
are compact. These assertions are easily derived from the main
properties of the norm and its continuity.

The vectors x € S are called unit or norimed vectors. Every

vector x # 0 can be noimed by setting

X
R M= - (1.1.6)

Since x € T, the set 7 1is absorbing, that is, for every x €E
there is an a > 0 such that o 'x € D. The value ||x|| is the
infimum of all such a's. This remark can be used to prove that
eveny absolutely convex absonbing compact set A <E A4 the closed
unit ball relative to some nohm. All we have to check is that the

functional
. -1
v(ix) = inf {a | a > 0, o "x €A} (1.1.7)
is a norm and that {x | v(x) < 1} = A. We omit the proof.

Thus, there L8 a natural one-to-one conrrespondence befween

noams on E and absofutely convex absorbing compact subsets of E.
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Let E be a normed space and S the unit sphere in E. Let
i.e., the space of all linear

be the dual (or conjugate) of E,
(or conjugate) noxrm

E*
We endow E* with the dual

functionals on E.

Lo - gup [ox)|  (for ¢ €E%) (1.1.8)

ll¢]] = sup
1| x€S

x#0
but we stay with the simpler

(actually, one should write |[|¢}*,
E 1is continuous, being a

notation). Every linear functional on

linear function of coordinates in an arbitrary basis SIRARETL S
n n
$(x) = z ¢(e )&, + where x = kzl £8) -

1
the supremum in (1.1.8) is finite and is attained,

k

Consequently,

i.e.,
6] = max |6(x) | = max L8601 (1.1.87
XES x#0 || x|
[A straightforward consequence of the formula preceding
(1.1.8') is that in Euclidean space every linear functional
This establishes

¢ ({x) = (x,y¢) .
between the spaces E*
It is anti-

admits the Riesz representation:

a one-to-one correspondence ¢ v y¢

known as the Riesz conrespondence or Lsomorphism,
Notice that

and

E,
linear, i.e., vy = 0.y, + 0.y, -
a0 tazdy  1Té 0 270

[|¢]]= max [(x,y¢)|. ]
XES

Example 1.

some basis. Then the dual norm in E*

(where p_l + q—l = 1) relative to the dual basis.

from the well-known Holder inequality

Let E Dbe endowed with the Kp-norm relative to

is precisely the Zq-norm
This follows

n n n
1/p q,l/q
| 1 a8l < (5 Jo P RN .
k=1 X K k=1 K ko1 K
Example 2. If the space E 1is Euclidean, then ||[¢]| = Hy¢|L
This follows from

i.e., the Riesz isomorphism is norm-preserving.
Schwarz's inequality.
Let L © E be a subspace and let ¥ be a linear functional
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on L. Then the norm of any extension of ¢ to the full space E
is obviously not smaller than the norm of ¢. The classical Hahn-
Banach Theorem asserts that any £inear functional ¢ gdven on a sub-
sApace L 04 a noamed space E can be extended to fhe whole space
E preserving 4ts noam. As is known, this result is valid even in
infinite-dimensional spaces. In the finite-dimensional case the
proof, given below, is eleméntary.

Consider first a real space E. We may assume that dim L =
n-1 and |lyll= 1. Pick an arbitrary vector e € E ~ L. Each
x € E can be uniquely written as a sum x = e + y, where & €R
and y € L. TIf ¢ 1is a linear extension of the given linear
functional ¢ €L* to E, then ¢(x) = Ep(e) + ¢v(y). Hence, the
single parameter on which the extension depends is the value X =
¢(e). We show that one can choose A so that |[|¢/] = 1. This

requirement reduces to the double inequality

-lee + yll < 2g + v(y) <l|lge + y|| . (1.1.9)
For & = 0 it is satisfied, since ||y]| = 1. If it is satisfied
for all & > 0 and all y € L, then it is also satisfied for all
£ <0 and all y €L. Setting y = €&z (with & >0 and 2z € L),
we rewrite (1.1.9) in the form

“lle + z|| - v(z) <A <|le + 2] - v(z) (we€ L).
The existence of such a A follows from the inequality

sup(-{le + z|[ - v(z)) < r < inf(le + z|| - v(z)),
which in turn holds because

-lle + lel‘ ¥lzy) < le + 22||— ¥ (z,)

for all =z,,z

1 € L ; indeed,

2

W(zz) - w(zl) = w(z2 - zl) <||22 - zl||<|le + zﬂ| + |le + zzll.
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Now let E be a complex space, L a subspace of E, and

¢ € L*, with |lyl|l= 1. Restricting the ground field to R, we
turn E 1into a real space. On L consider the R -linear functio-
nal Y, = Rey. Obviously, Hw0||= 1. Extend Y, to an R-linear
functional ¢, on E such that H¢Ol|= 1. Now set ¢(x) = ¢,(x)
—i¢0(ix). The functional ¢ 1is C~linear, being additive, IR~homo-
geneous, and such that ¢(ix) = i¢(x). If x € L, then

d(x) = wo(x) - iwo(ix) = Re Y(x) - 1 Re y(ix) =

= Re Y({x) + 1 Im P(x) = v(x) ,

i.e., ¢ is an extension of Y. Finally, for every x € E, ‘

X = x)e or a suitable , and then x) = Re xe
boal = o) 10 g ple © d then |¢(x)| pixe )
= oo xe™ ) <[lxe™ | = {lx|l, di.e., lloll < 1. 1In the end, |[o]l =1.

The consequences of the Hahn-Banach Theorem are rather nume-
rous. One of them is that for every vector X Zhere L5 a Linean
fjunctional ¢ such that o) =1 and 9 (x4) =Hx0|| (this ¢ is
called a dupporting functional to the sphere {x | ||x]|| = onll} at
the point xo). To see this for an X # 0, it suffices to take
0 and put w(Exo)
EHXOIL This yields a linear functional ¢ on L with the needed

0
properties. It remains to extend ¥ to E preserving its norm.

the one-dimensional subspace L spanned by X

For Xg = 0 there is nothing to prove.

The well-known Duality Theorem asserts that the canondical mappding
E ~ E** which sends each vector x 4Anto the Linean functional
X on E* given by §(¢) =¢(x) 44 an Lsomorphism. For normed
spaces one has, in addition, that ||x]|| = ||x||, i.e., the canonicat

mapping L5 Lsomeitndic (in other words, upon passing twice to the

dual one recovers the original norm). In fact,
%] = sup =] . sup leo] _ Hx1l,
970 |l ¢l o#0 |l o]l
because |¢(x)|<||¢||||x|| , where equality is attained if one takes
for ¢ the supporting functional to the sphere ||zl = [|x]|| at «x.

Let A be a linear operator in the normed space E. By defi-
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nition, the noam of A is

lall = sup U2dl = oup |ax || (1.1.10)
x#0 ||x || XES
(where S denotes, as above, the unit sphere in E). That the

supremum in (1.1.10) is finite and attained follows, as for linear
functionals, from the compactness of S and the continuity of the

linear operator A. The latter is in turn obvious thanks to the

representation of A 1in an arbitrary basis @preera® f
n n
Ax = kgl £ ey (for x = k£1 e -
Hence,
a1l = max [|ax || = max 128l (1.1.10
XES x#0 ||x]|

In this way the algebra End(E) of all linear operators in E
(or endomonrphisms of E) becomes a noamed algebra, that is, the
functional A + |[|A]| on End(E), in addition to being a norm on
the linear space End(E), 1is a #ding noxm, i.e., it possesses the

ndng propenty

llaBll < |2l |8} (1.1.11)
and is undit-preserving :

1]l =1, (1.1.12)

where I € End(E) denotes the identity operator.

With each linear operator A in E one associates the conju-
gate or adjoint operator A* in E*, acting as (A%*¢) (x) = ¢ (Ax).
It is readily seen that for the conjugate norm on E* one has that

l|a*]} = [[all. (1.1.13)
In fact,
[|a*|| = sup ||A*¢|| = sup sup | (A*¢) (x)]| =
ol =1 lloll=1 ]I« =1
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= sup sup |¢(Ax)| = sup sup |¢(Ax)| =
[loll =1 || x|[=1 I x[=1 |l |=1
= sup [|Ex|| = sup ||ax|| = ||a]] ;
[ %=1 [l x[F1

~

here we used the canonical isometry E » E*%,

In a Euclidean space E one can always use the Riesz isomor-
phism to think of A* as acting in E so that (Ax,y) = (x,A*y)
for all x,y €E. The left-hand side of this equality is the
Hermitian-bilinear functional associated with the operator A. The
correspondence defined in this manner is an isomorphism between the
space of linear operators and the space of Hermitian-bilinear

functionals. Moreover,

all Lax, vy | _

TlxlidEo Txlliyll e

Both supremums are finite and attained ; the common value is called

| (ax,y)].

the noam of the Heamitian-bifinean functional. One can also consi-
der the Hermitian-quadratic functional Q(x) = (Ax,x) associated

with A, and define its norm as

llol| = sup lax,x) | _

5 = sup | (Ax,x)| = sup | (Ax,x) |
x#0  |[x|f lHxl=1 =1
Clearly, |{|Q|l <[{a]l. on the other hand, one can show that |/A]l <
< 2||Q|l, and that this inequality is exact (i.e., the best).

In some cases the norm of an operator A can be computed

explicitly in terms of the entries of its matrix.

Example 1. Suppose E 1is endowed with the £_-norm relative

to some basis €yrecrre . If in this basis A 1is given by the
matrix (a, )5 thgn
jk'3, k=1 '
n
lall = max ) Iajkl . (1.1.14)

1<j<n k=1

This particular norm of operators (or matrices) is called the iow

noam,

Example 2. With the same notations, but endowing E with the



