TEEE - (COMPUTER
ORGANIZATION
AND DESIGN

THE HARDWARE/SOFTWARE INTERFACE

3

an

-

DAVID A. PATTERSON
JOHN L. HENNESSY

M <

MORGAN KAUFMANN

Senior Editor

Publishing Services Manager
Editorial Assistant

Cover Design

Cover and Chapter Illustration
Text Design

Composition

Technical Illustration
Copyeditor

Proofreader

Indexer

Interior printer

Cover printer

Denise E. M. Penrose
Simon Crump

Summer Block

Ross Caron Design

Chris Asimoudis

GGS Book Services

Nancy Logan and Dartmouth Publishing, Inc.
Dartmouth Publishing, Inc.
Ken DellaPenta

Jacqui Brownstein

Linda Buskus

Courier

Courier

Morgan Kaufmann Publishers is an imprint of Elsevier.
500 Sansome Street, Suite 400, San Francisco, CA 94111

This book is printed on acid-free paper.

© 2005 by Elsevier Inc. All rights reserved.

Designations used by companies to distinguish their products are often claimed as trademarks or registered
trademarks. In all instances in which Morgan Kaufmann Publishers is aware of a claim, the product names
appear in initial capital or all capital letters. Readers, however, should contact the appropriate companies

for more complete information regarding trademarks and registration.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means—electronic, mechanical, photocopying, scanning, or otherwise—without prior written per-

mission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford,
UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, e-mail: permissions@elsevier.com.uk. You may
also complete your request on-line via the Elsevier homepage (http:/elsevier.com) by selecting “Customer

Support” and then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data

Application submitted

ISBN: 1-55860-604-1

For information on all Morgan Kaufmann publications,

visit our Web site at www.mkp.com.

Printed in the United States of America

04 05 06 07 08 54321

MIPS Reference Data Card (“Green Card”) 1. Pull along perforation to separate card 2. Fold bottom side (columns 3 and 4) together

e e . el et o i’ 7 o™ it i ettt kit o i B o S | o | (T Pt WA e, St

M I P s Reference Data

ARITHMETIC CORE INSTRUCTION SET @ OPCODE/
MNE- FMT/FT/'
MON- FOR- FUNCT
NAME IC MAT OPERATION (Hex)
Branch On FP True belt FI if(FPcond)PC=PC+4+BranchAddr (4) 11/8/1/--
Branch On FP False beif FI if(!FPcond)PC=PC+4+BranchAddr(4) 11/8/0/--
Divide div. R Lo=R[rs)/R[rt]; Hi=R[rs]%R][rt] 0/--/--/1a
Divide Unsigned divu R Lo=R[rs)/R[rt]; Hi=R[rs]%R[rt] (6) 0/--/--/1b
FPAdd Single add.s FR F[fd]= F[fs] + F[f{] 11/10/--/0
FP Add F[fd],F[fd+1]} = {F[fs],F[fs+1]} +
i sudd P S HRERIG S {{F[[ﬂ]]’F[[ﬁH]]}} 1/11/-/0
FP Compare Single c.x.s* FR FPcond = (F[fs] op F[ft])? 1: 0 11/10/--1y
FP Compare FPcond = ({F[fs],F[fs+1]} o
Dechls e {{F[[ﬁ]],F[[ftH]]}}) 1.0 AV
* (xiseq, 1t, or 1e) (opis ==, <, or <=) (yis 32, 3c, or 3¢)

FP Divide Single div.s FR F[fd] = F[fs] / F[ft] 11/10/--13
FP Divide X F[fd],F[fd+1]} = {F[fs],F[fs+1]} /
i aiv.a FR (FLIALF{fGL} {{é[é],]:[[ﬁﬂl]}} 1/11/-/3
FP Multiply Single mul.s FR F[fd] = F[fs] * F[ft] 11/10/--/2
FP Multipl F[fd],F[fd+1]} = {F[fs],F[fs+1]} *
i il R LLEIE {{Ig[ig],F[[ﬂH]]}} 1112
FP Subtract Single sub.s FR F[fd]=F[fs] - F[ft] 11/10/--/1
FP Subtract F[fd],F[fd+1]} = {F[fs],F[fs+1]} -
e sub o BRI B {{IE[ﬂ]LF[[ﬁH]]}} 1/11/--/1
Load FP Single 1wel 1 F[rt]=M[R[rs]+SignExtimm] (2) 31/-~/--/-
Load FP T F[rt]=M[R[rs]+SignExtImm]; 2) 38/ecfonf
Double F[rt+1]=M[R[rs]+SignExtimm-+4]
Move From Hi mfhi R R[rd] =Hi 0 /--/--/10
Move From Lo mflo R R[rd]=Lo 0 /--/--/12
Move From Control mfc0 R R[rd] = CR[rs] 16 /0/--/0
Multiply mult R {HiLo} =R[rs] * R[rt] 0/--/--/18
Multiply Unsigned multu R {HiLo} =R[rs] * R[rt] 6) 0/--/--/19
Store FP Single swel 1 M[R[rs]+SignExtImm] = F[rt] 2) 39/--/--/--
Store FP M[R[rs]+SignExtImm] = F[rt]; 2
Double pcke s M{RErs}+Si§nExtImm1r4] :[F][n+1]() Sdieti-
FLOATING POINT INSTRUCTION FORMATS

FR r opcode i fimt [ft | fs | fd | funct l

31 26 25 21 20 16 15 11 10 65 0
FI r opcode 1 fmt ft N immediate |
31 26 25 2120 16 15 0
PSEUDO INSTRUCTION SET
NAME MNEMONIC OPERATION

Branch Less Than blt if(R[rs]<R[rt]) PC = Label

Branch Greater Than bgt if(R[rs]>R[rt]) PC = Label

Branch Less Than or Equal ble if(R[rs]<=R[rt]) PC = Label

Branch Greater Than or Equal bge if(R[rs]>=R[rt]) PC = Label

Load Immediate g R[rd] = immediate

Move move R[rd] = R[rs]

CORE INSTRUCTION SET
MNE- OPCODE/
MON- FOR- FUNCT
NAME IC MAT OPERATION (in Verilog) (Hex)
Add add R R[rd] = R[rs] + R[rt] (1) 07204
Add Immediate addi I R[rt] = R[rs] + SignExtImm (1)(2) B
Add Imm. Unsigned addiu I R[rt] = R[rs] + SignExtImm 2) Nes
Add Unsigned addu R R[rd] =R[rs] + R[rt] 0/ 21,64
And and R R[rd] = R[rs] & R[rt] 0/ 24y
And Immediate andi 1 R[rt] = R[rs] & ZeroExtImm 3) Chex
if(R[rs]==R[rt])
BranchOnEqual bea I po_pcistBranchAddr @ e
if(R[rs]!=R[rt])
Branch On Not Equal bne 1 PC=PC-+4+BranchAddr @) -
Jump j J PC=JumpAddr 5) 2iex
Jump And Link jal J R[31]=PC+4;PC=JumpAddr 5) Sen
Jump Register jx R PC=R[rs] 0/ 08,4
i R[rt]={24’b0,M[R[rs] 4
Load Byte Unsigned 1bu I +SignExtimm](7:0)} @ 0/ 24«
Load Halfword R[rt]={16’b0,M[R][rs]
Unsigned B i +SignExtimm](15:0)3 @) O 2ex
Load Upper Imm. 1ui I R[rt] = {imm, 16’b0} Bhiec
Load Word 1w I R[rt] = M[R[rs]+SignExtImm] (2) 0/23p.4
Nor nor R R[rd] =~ (R[rs] | R[rt]) 0/271ex
Or or R R[rd] = R[rs] | R[rt] 012505
Or Immediate ori I R[rt] = R[rs] | ZeroExtImm 3) - diex
Set Less Than slt R R[rd]=(R[rs]<R[rt])?1:0 0/ 2ape,
Set Less Than Imm. siti I Rist] = (Rles] = StguExthum) Apex
210 @)
Set Less Than Imm. ‘ R[rt] = (R[rs] < SignExtImm)
Unsigned il 21:0 @) e
Set Less Than
= 21:
Unsigaed situ R R[rd]=R[s]<R[t])?21:0 (6) 0/2byy
Shift Left Logical ~ s11 R R[rd] = R[rs] << shamt 0/ 004
Shift Right Logical srl R R[rd] = R[rs] >> shamt 0/ 02,
MR [rs]+SignExtImm](7:0) =
Store Byte sb I RI)(7:0) (2) 28
M[R[rs]+SignExtImm](15:0) =
Store Halfword . sh 1 R[rt](15:0) (2) 20
Store Word sw I M[R[rs]+SignExtimm] =R[rt] (2) 2bpex
Subtract sub R R[rd] =R[rs] - R[rt] (1) 0/ 2%y
Subtract Unsigned subu R R[rd] = R[rs] - R[rt] 0/23pex

(1) May cause overflow exception

(2) SignExtImm = { 16{immediate[15]}, immediate }

(3) ZeroExtImm = { 16{1b’0}, immediate }

(4) BranchAddr = { 14{immediate[15]}, immediate, 2’b0 }
(5) JumpAddr= { PC[31:28], address, 2°b0 }

(6) Operands considered unsigned numbers (vs. 2 s comp.)

BASIC INSTRUCTION FORMATS

R opcode l IS I t l rd | shamt | funcu
31 26 25 21 20 16 15 11 10 65 0
| ,Tpcode ‘ IS ‘ rt ‘ immediate J
31 26 25 21 20 16 15 0
J { opcode 1 address i
31 26 25 0

REGISTER NAME, NUMBER, USE, CALL CONVENTION

PRESERVEDACROSS
4+ NAME NUMBER USE A CALL?
$zero 0 The Constant Value 0 N.A.
$at 1 Assembler Temporary No
Values for Function Results
sl 23 Expression Evaluation e
$a0-$a3 4-7 Arguments No
$t0-$t7 8-15 Temporaries No
$50-$s7 16-23 Saved Temporaries Yes
$t8-$t9 24-25 Temporaries No
$k0-$kI 26-27 Reserved for OS Kernel No
$gp 28 Global Pointer Yes
$sp 29 Stack Pointer Yes
$fp 30 Frame Pointer Yes
$ra 31 Return Address Yes -G

Copyright 2005 by Elsevier, Inc., All rights reserved. From Patterson and Hennessy, Computer Organization and Design, 3rd ed.

OPCODES, BASE CONVERSION, ASCIl SYMBOLS

®

MIPS (1) MIPS (2) MIPS Deci Hexa- ASCIT Deci Hexa- ASCII
opcode funct funct | Binary n:;; deci- Char- rr:\i deci- Char-
(31:26) (5:0) (5:0) mal acter mal acter
[€0) s11 add.f 000000 O 0 NUL | 64 40 @
sub.f 00 0001 1 1 SOH | 65 41 A
j srl mul.f 000010 2 2 STX | 66 .42 B
jal sra div.f 000011 3 3 EEX Li6} 437-5C
beq sllv sqrtf 00 0100 4 4 EOT 68 44 D
bne abs.f 000101 5 5 ENQ| 69 45 E
blez srlv mov.f 000110 6 6 ACK | 70 46 F
bgtz srav neg.f 000111 7 J=eBEE: | <A1 47 G
addi IJr 00 1000 8 8 .'BS g P EEAT | e ¢ |
addiu jalr 00 1001 9 9 “HT 73 49 1
slti movz 001010 10 2. LF 74 4a J
sltiu movn 001011 11 i 75 4 K
andi syscall round.wf|00 1100 12 o o) 76 g0 L
ori break trunc.w/f|00 1101 13 d CR 77 4d M
xori ceil.wf |00 1110 14 e S0 78 4e N
lui sync floor.w/f|00 1111 15 151 79 4 O
mfhi 010000 16 10 DL 0 oy
@) mthi 01 0001 17 T EDE] 4 8 Sl
mflo movzf |01 0010 18 12 °De2: |82 2R
mtlo movn.f 010011 19 13 DE3 83 53 S
010100 20 14 DC4 | 84 4= T
010101 21 15 NAK | 85 sifet O
010110 22 16 SYN | 86 6. W
010111 23 17 ETB | 87 57 W
mult 01 1000 24 18 CAN | 8% Iof TEN®. ¢
multu 11001 =228 19 EM 89 R
div 011010 26 la SUB | 90 A
divu 0171011 =27 Ib. ESC | 91 5b [
0I 1100 28 Ic FS 92 3¢
01 1101 29 1d: GS 93 5d]
01 1110 30 e RS 94 Seiuh
01, 1111- 34 1f U8 95 Bt
1b add cvt.s,f [I00000 32 20 Space| 96 60 :
1h addu cvt.df (100001 33 - 21 ! 97 61 a
1wl sub 100010 34 22 " 98 62 b
1w subu 100011 35 23 # 99 63 ©
lbu and cvt.w,f 100100 36 24 $ 100 64 d
lhu or 100101 37 > 25 95 % 101 65 ¢
lwr xor 100110 38 26 & 102 66 f
nor 100111--39 27 7 103 67 g
sb 107000 40 28 ¢ 104 68 h
sh 10 1001 41 29) 105 69 i
swl slt 101010 42 o 106 a3
sw sltu 101011 43 b 107 6b k
101100 44 2c 108 6¢
101101 45 2d - 109 6d m
swr 101110 46 2e : 110 6oz h
cache 10 1111 47 28 0 111 6f o
11 tge St 110000 48 30 0 112 W=—"p
lwcl tgeu c.unf 110001 49 31 1 113 71 q
Iwc2 tlt c.eqf 110010 50 < 32 .22 114 72 r
pref tltu c.ueq.f 11 0011 51 33 2 115 73 S
teq e.orel s TO0N00 >822 3 116 74 t
ldel eultis b OI0l 2 53R e 35 450 117 75 u
1dc2 tne c.olef (110110 54 36 6 118 76 ¥
crulefis FEROLTTS: 550137 119 T 5w
sc c.8tf 111000 56 38 8 120 B
swel c.nglef (111001~ '57 :39" 19 121 s e
swe2 c.seqf |111010 58 3.5 122 i e
c.nglf |111011 59 3b i 123 7b {
ALY i 3 B 1T SR R YRS 124 ¥C |
sdcl c.ngef (111101 61 3d = 125 7d Vi
sde2 c.lef 11 1110 62 ez 126 Teisity
e.ngtf I11 1111 63 xSy 127 7f DEL

IEEE 754 FLOATING POINT
STANDARD

(-1)8 x (1 + Fraction) x 2(Exponent- Bias)

where Single Precision Bias = 127,

Double Precision Bias = 1023.

IEEE Single Precision and
Double Precision Formats:

IEEE 754 Symbols
Exponent | Fraction Object
0 0 +0
0 #0 * Denorm
1 to MAX - 1 |anything [+ FI. Pt. Num.
MAX 0 too
MAX #0 NaN

S.P. MAX = 255, D.P. MAX = 2047

(1) opcode(31:26) ==
(2) opcode(31:26) == 17, (11py); if fmt(25:21)==16,,, (10y,c,) f= s (single);

if fmt(25:21)==17,05, (11,0, /= d (double)

S Exponent [Fraction
3130 2322 0
[S I Exponent ’ Fraction %\E
63 62 52 51 0
MEMORY ALLOCATION STACK FRAME
Higher
—> Stack
Ssp ks " Argument 6 Memoh
Addresses
Argument 5
$fp —p»
Saved Registers
Dynamic Data 5 Stack
$gp 91000 8000y, Grows
Static Data Local Variables
1000 00004,
Text $sp—py
pc 90040 0000y, Lower
Memory
o Reserved Addresses
DATA ALIGNMENT .
Double Word
Word Word
Half Word Half Word Half Word Half Word
Byte | Byte | Byte j Byte | Byte ‘ Byte | Byte I Byte

i g 3 4 5 6 7
Value of three least significant bits of byte address (Big Endian)
EXCEPTION CONTROL REGISTERS: CAUSE AND STATUS

31

BD = Branch Delay, UM = User Mode, E

Interrupt Exception
15 8 6 2
Pending
[H 8

U E|I
M LIE
4 T
L = Exception Level,IE =Interrupt Enable

EXCEPTION CODES
]11;“ Name Cause of Exception 1\11)1::1 Name Cause of Exceptioﬂ
0 Int Interrupt (hardware) 9 Bp Breakpoint Exception
4 AdE Address Error Exception 10 RI Reserved Instruction
L (load or instruction fetch) Exception
Address Error Exception Coprocessor
il (store) et Unimplemented
Bus Error on Arithmetic Overflow
Ok Instruction Fetch gy Exception
7 DBE Bus Error on Load or Store[| 13 Tr Trap
8 Sys Syscall Exception 15 FPE Floating Point Exception
SIZE PREFIXES (10* for Disk, Communication; 2 for Memory)
PRE- PRE- PRE- PRE-
SIZE FIX SIZE IV SIZE -~ FIX. | SIZE FIX
10%,2!% Kilo- [10'%,2% Peta- | 107 milli- | 10" femto-
10522 Mega- [10'8,2%° Exa- | 10® micro-| 10'® atto-
10°,2° Giga- [10*,27° Zetta- | 10° nano- | 102" zepto-
1022% Tera- |10 2% Yotta- | 102 pico- | 10%* yocto-

The symbol for each prefix is just its first letter, except |t is used for micro.

Copyright 2005 by Elsevier, Inc., All rights reserved. From Patterson and Hennessy, Computer Organization and Design, 3rd ed.

1. Pull along perforation to separate card 2. Fold bottom side (columns 3 and 4) together

MIPS Reference Data Card (“Green Card”)

THIRD EDITI ON

Computer Organization Design

THE HARDWARE/SOFTWARE INTERFACE

ACKNOWLEDGEMENTS

Figures 1.9, 1.15 Courtesy of Intel.
Figure 1.11 Courtesy of Storage Technology Corp.

Figures 1.7.1, 1.7.2, 6.13.2 Courtesy of the Charles Babbage Institute,
University of Minnesota Libraries, Minneapolis.

Figures 1.7.3,6.13.1, 6.13.3, 7.9.3, 8.11.2 Courtesy of IBM.
Figure 1.7.4 Courtesy of Cray Inc.

Figure 1.7.5 Courtesy of Apple Computer, Inc.

Figure 1.7.6 Courtesy of the Computer History Museum.
Figure 7.33 Courtesy of AMD.

Figures 7.9.1, 7.9.2 Courtesy of Museum of Science, Boston.
Figure 7.9.4 Courtesy of MIPS Technologies, Inc.

Figure 8.3 ©Peg Skorpinski.

Figure 8.11.1 Courtesy of the Computer Museum of America.

Figure 8.11.3 Courtesy of the Commercial Computing Museum.

Figures 9.11.2, 9.11.3 Courtesy of NASA Ames Research Center. £, '

Figure 9.11.4 Courtesy of Lawrence Livermore National Laboratory.
v

Computers in the Real World:
Photo of “A Laotian villager,” courtesy of David Sanger.
Photo of an “Indian villager,” property of Encore Software, Ltd., India.

Photos of “Block and students” and “a pop-up archival satellite tag,”
courtesy of Professor Barbara Block. Photos by Scott Taylor.

Photos of “Professor Dawson and student” and “the Mica micromote,”
courtesy of AP/World Wide Photos.

Photos of “images of pottery fragments” and “a computer reconstruc-
tion,” courtesy of Andrew Willis and David B. Cooper, Brown University,
Division of Engineering.

Photo of “the Eurostar TGV train,” by Jos van der Kolk.
Photo of “the interior of a Eurostar TGV cab,” by Andy Veitch.
Photo of “firefighter Ken Whitten,” courtesy of World Economic Forum.

Graphic of an “artificial retina,” © The San Francisco Chronicle.
Reprinted by permission.

Image of “A laser scan of Michelangelo’s statue of David,” courtesy of

* Marc Levoy and Dr. Franca Falletti, director of the Galleria dell'Acca-

demia, Italy.

“An image from the Sistine Chapel,” courtesy of Luca Pezzati. IR image
recorded using the scanner for IR reflectography of the INOA (National
Institute for Applied Optics, http://arte.ino.it) at the Opificio delle Pietre
Dure in Florence.

Preface

Preface

The most beautiful thing we can experience is the mysterious.
It is the source of all true art and science.

Albert Einstein, What I Believe, 1930

About This Book

We believe that learning in computer science and engineering should reflect the
current state of the field, as well as introduce the principles that are shaping com-
puting. We also feel that readers in every specialty of computing need to appreci-
ate the organizational paradigms that determine the capabilities, performance,
and, ultimately, the success of computer systems.

Modern computer technology requires professionals of every computing spe-
cialty to understand both hardware and software. The interaction between hard-
ware and software at a variety of levels also offers a framework for understanding
the fundamentals of computing. Whether your primary interest is hardware or
software, computer science or electrical engineering, the central ideas in computer
organization and design are the same. Thus, our emphasis in this book is to show
the relationship between hardware and software and to focus on the concepts that
are the basis for current computers.

The audience for this book includes those with little experience in assembly
language or logic design who need to understand basic computer organization
as well as readers with backgrounds in assembly language and/or logic de-
sign who want to learn how to design a computer or understand how a system
works and why it performs as it does.

About the Other Book

Some readers may be familiar with Computer Architecture: A Quantitative
Approach, popularly known as Hennessy and Patterson. (This book in turn is
called Patterson and Hennessy.) Our motivation in writing that book was to
describe the principles of computer architecture using solid engineering funda-

xii

Preface

mentals and quantitative cost/performance trade-offs. We used an approach that
combined examples and measurements, based on commercial systems, to create
realistic design experiences. Our goal was to demonstrate that computer architec-
ture could be learned using quantitative methodologies instead of a descriptive
approach. It is intended for the serious computing professional who wants a
detailed understanding of computers.

A majority of the readers for this book do not plan to become computer archi-
tects. The performance of future software systems will be dramatically affected,
however, by how well software designers understand the basic hardware tech-
niques at work in a system. Thus, compiler writers, operating system designers,
database programmers, and most other software engineers need a firm grounding
in the principles presented in this book. Similarly, hardware designers must
understand clearly the effects of their work on software applications.

Thus, we knew that this book had to be much more than a subset of the mate-
rial in Computer Architecture, and the material was extensively revised to match
the different audience. We were so happy with the result that the subsequent edi-
tions of Computer Architecture were revised to remove most of the introductory
material; hence, there is much less overlap today than with the first editions of
both books.

Changes for the Third Edition

We had six major goals for the third edition of Computer Organization and Design:
make the book work equally well for readers with a software focus or with a hard-
ware focus; improve pedagogy in general; enhance understanding of program per-
formance; update the technical content to reflect changes in the industry since the
publication of the second edition in 1998; tie the ideas from the book more closely
to the real world outside the computing industry; and reduce the size of this book.

First, the table on the next page shows the hardware and software paths through
the material. Chapters 1, 4, and 7 are found on both paths, no matter what the expe-
rience or the focus. Chapters 2 and 3 are likely to be review material for the hard-
ware-oriented, but are essential reading for the software-oriented, especially for
those readers interested in learning more about compilers and object-oriented pro-
gramming languages. The first sections of Chapters 5 and 6 give overviews for those
with a software focus. Those with a hardware focus, however, will find that these
chapters present core material; they may also, depending on background, want to
read Appendix B on logic design first and the sections on microprogramming and
how to use hardware description languages to specify control. Chapter 8 on
input/output is key to readers with a software focus and should be read if time per-
mits by others. The last chapter on multiprocessors and clusters is again a question
of time for the reader. Even the history sections show this balanced focus; they
include short histories of programming languages, compilers, numerical software,
operating systems, networking protocols, and databases.

Preface

5. The Processor: Datapath and

Chapter or Appendix Sections Software Focus | Hardware Focus
1. Computer Abstractions 1.1t01.6 - b A ¢
and Technology 1.7 (History)
2.1102.11 - -y
2.12 (Compilers)
2. Instructions: Language 2.13 (C sort) b4 -
of the Computer 2.14 (Java)
2.151t02.18 e -y
2.19 (History) ‘i ¢
3. Arithmetic for Computers &l ool - -
3.12 (History)
D. RISC instruction set architectures| @ D.1to D.19
4. Assessing and Understanding 411046 - o
Performance 4.7 (History)
B. The Basics of Logic Design B.1t0B.13 -rey
5.1 (Overview) ey ey
521057 -
5.8 (Microcode) o

Control 5.9 (Verilog) -
5.10t0 5.12 e b A ¢
@ 5.13 (History) s i
C. Mapping Control to Hardware C1toC.6
6.1 (Overview) b A 4 b A4
6.2 t0 6.6 b A 4
6. Enhancing Performance with 6.7 (verilog) o
Pipelining 6.8106.9 b A ¢
6.10t0 6.12 b A ¢ b A ¢
6.13 (History) o
7. Large and Fast: Exploiting 711078 T e
Memory Hierarchy 7.9 (History) i
811082 o oY
8. Storage, Networks, and 8.3 (Networks) o
Other Peripherals 8.4108.10 b A 4
8.13 (History) s
9.1t09.10 SAw
9. Multiprocessors and Clusters
9.11 (History) i
i) A.1to A12
e P St o S
Computers in the Real World Between Chapters 5 s

Read carefully @ &Y
Review or read Y@

Read if have time

Read for culture XD

Reference b pwd

i,

xiv

Preface

The next goal was to improve the exposition of the ideas in the book, based on
difficulties mentioned by readers of the second edition. We added five new book
elements to help. To make the book work better as a reference, we placed defini-
tions of new terms in the margins at their first occurrence. We hope this will help
readers find the sections when they want to refer back to material they have
already read. Another change was the insertion of the “Check Yourself” sections,
which we added to help readers to check their comprehension of the material on
the first time through it. A third change is that added extra exercises in the “For
More Practice” section. Fourth, we added the answers to the “Check Yourself” sec-
tions and to the For More Practice exercises to help readers see for themselves if
they understand the material by comparing their answers to the book. The final
new book element was inspired by the "Green Card" of the IBM System/360. We
believe that you will find that the MIPS Reference Data Card will be a handy refer-
ence when writing MIPS assembly language programs. Our idea is that you will
remove the card from the front of the book, fold it in half, and keep it in your
pocket, just as IBM S/360 programmers did in the 1960s.

Third, computers are so complex today that understanding the performance of
a program involves understanding a good deal about the underlying principles
and the organization of a given computer. Our goal is that readers of this book
should be able to understand the performance of their progams and how to
improve it. To aid in that goal, we added a new book element called “Understand-
ing Program Performance” in several chapters. These sections often give concrete
examples of how ideas in the chapter affect performance of real programs.

Fourth, in the interval since the second edition of this book, Moore’s law has
marched onward so that we now have processors with 200 million transistors,
DRAM chips with a billion transistors, and clock rates of multiple gigahertz. The
“Real Stuff” examples have been updated to describe such chips. This edition also
includes AMDG64/IA-32e, the 64-bit address version of the long-lived 80x86 archi-
tecture, which appears to be the nemesis of the more recent IA-64. It also reflects
the transition from parallel buses to serial networks and switches. Later chapters
describe Google, which was born after the second edition, in terms of its cluster
technology and in novel uses of search.

Fifth, although many computer science and engineering students enjoy infor-
mation technology for technology’s sake, some have more altruistic interests. This
latter group tends to have more women and underrepresented minorities. Conse-
quently, we have added a new book element, “Computers in the Real World,” two-
page layouts found between each chapter. Our perspective is that information
technology is more valuable for humanity than most other topics you could
study—whether it is preserving our art heritage, helping the Third World, saving
our environment, or even changing political systems—and so we demonstrate our
view with concrete examples of nontraditional applications. We think readers of
these segments will have a greater appreciation of the computing culture beyond

Preface

XV

the inherently interesting technology, much like those who read the history sec-
tions at the end of each chapter

Finally, books are like people: they usually get larger as they get older. By using
technology, we have managed to do all the above and yet shrink the page count by
hundreds of pages. As the table illustrates, the core portion of the book for hard-
ware and software readers is on paper, but sections that some readers would value
more than others are found on the companion CD. This technology also allows
your authors to provide longer histories and more extensive exercises without
concerns about lengthening the book. Once we added the CD to the book, we
could then include a great deal of free software and tutorials that many instructors
have told us they would like to use in their courses. This hybrid paper-CD publi-
cation weighs about 30% less than it did six years ago—an impressive goal for
books as well as for people.

Instructor Support

We have collected a great deal of material to help instructors teach courses using
this book. Solutions to exercises, figures from the book, lecture notes, lecture
slides, and other materials are available to adopters from the publisher. Check the
publisher’s Web site for more information:

www.mkp.com/companions/1558606041

Concluding Remarks

If you read the following acknowledgments section, you will see that we went to
great lengths to correct mistakes. Since a book goes through many printings, we
have the opportunity to make even more corrections. If you uncover any remaining,
resilient bugs, please contact the publisher by electronic mail at cod3bugs@mkp.com
or by low-tech mail using the address found on the copyright page. The first person
to report a technical error will be awarded a $1.00 bounty upon its implementation
in future printings of the book!

This book is truly collaborative, despite one of us running a major university.
Together we brainstormed about the ideas and method of presentation, then indi-
vidually wrote about one-half of the chapters and acted as reviewer for every draft
of the other half. The page count suggests we again wrote almost exactly the same
number of pages. Thus, we equally share the blame for what you are about to read.

Acknowledgments for the Third Edition

We'd like to again express our appreciation to Jim Larus for his willingness in con-
tributing his expertise on assembly language programming, as well as for welcom-
ing readers of this book to use the simulator he developed and maintains. Our

xvi

Preface

exercise editor Dan Sorin took on the Herculean task of adding new exercises and
answers. Peter Ashenden worked similarly hard to collect and organize the com-
panion CD.

We are grateful to the many instructors who answered the publisher’s surveys,
reviewed our proposals, and attended focus groups to analyze and respond to our
plans for this edition. They include the following individuals: Michael Anderson
(University of Hartford), David Bader (University of New Mexico), Rusty Baldwin
(Air Force Institute of Technology), John Barr (Ithaca College), Jack Briner
(Charleston Southern University), Mats Brorsson (KTH, Sweden), Colin Brown
(Franklin University), Lori Carter (Point Loma Nazarene University), John Casey
(Northeastern University), Gene Chase (Messiah College), George Cheney (Univer-
sity of Massachusetts, Lowell), Daniel Citron (Jerusalem College of Technology,
Israel), Albert Cohen (INRIA, France), Lloyd Dickman (PathScale), Jose Duato
(Universidad Politécnica de Valencia, Spain), Ben Dugan (University of Washing-
ton), Derek Eager (University of Saskatchewan, Canada), Magnus Ekman (Chalm-
ers University of Technology, Sweden), Ata Elahi (Southern Connecticut State
University), Soundararajan Ezekiel (Indiana University of Pennsylvania), Ernest
Ferguson (Northwest Missouri State University), Michael Fry (Lebanon Valley Col-
lege, Pennsylvania), R. Gaede (University of Arkansas at Little Rock), Jean-Luc
Gaudiot (University of California, Irvine), Thomas Gendreau (University of Wis-
consin, La Crosse), George Georgiou (California State University, San Bernardino),
Paul Gillard (Memorial University of Newfoundland, Canada), Joe Grimes (Califor-
nia Polytechnic State University, SLO), Max Hailperin (Gustavus Adolphus Col-
lege), Jayantha Herath (St. Cloud State University, Minnesota), Mark Hill
(University of Wisconsin, Madison), Michael Hsaio (Virginia Tech), Richard
Hughey (University of California, Santa Cruz), Tony Jebara (Columbia University),
Elizabeth Johnson (Xavier University), Peter Kogge (University of Notre Dame),
Morris Lancaster (BAH), Doug Lawrence (University of Montana), David Lilja
(University of Minnesota), Nam Ling (Santa Clara University, California), Paul Lum
(Agilent Technologies), Stephen Mann (University of Waterloo, Canada), Diana
Marculescu (Carnegie Mellon University), Margaret McMahon (U.S. Naval Acad-
emy Computer Science), Uwe Meyer-Baese (Florida State University), Chris Milner
(University of Virginia), Tom Pittman (Southwest Baptist University), Jalel Rejeb
(San Jose State University, California), Bill Siever (University of Missouri, Rolla),
Kevin Skadron (University of Virginia), Pam Smallwood (Regis University, Colo-
rado), K. Stuart Smith (Rocky Mountain College), William J. Taffe (Plymouth State
University), Michael E. Thomodakis (Texas A&M University), Ruppa K. Thulasiram
(University of Manitoba, Canada), Ye Tung (University of South Alabama), Steve
VanderLeest (Calvin College), Neal R. Wagner (University of Texas at San Antonio),
and Kent Wilken (University of California, Davis).

Preface

xvii

We are grateful too to those who carefully read our draft manuscripts; some
read successive drafts to help ensure new errors didn’t creep in as we revised.
They include Krste Asanovic (Massachusetts Institute of Technology), Jean-Loup
Baer (University of Washington), David Brooks (Harvard University), Doug Clark
(Princeton University), Dan Connors (University of Colorado at Boulder), Matt
Farrens (University of California, Davis), Manoj Franklin (University of Maryland
College Park), John Greiner (Rice University), David Harris (Harvey Mudd Col-
lege), Paul Hilfinger (University of California, Berkeley), Norm Jouppi (Hewlett-
Packard), David Kaeli (Northeastern University), David Oppenheimer (University
of California, Berkeley), Timothy Pinkston (University of Southern California),
Mark Smotherman (Clemson University), and David Wood (University of Wis-
consin, Madison).

To help us meet our goal of creating 70% new exercises and solutions for this
edition, we recruited several graduate students recommended to us by their pro-
fessors. We are grateful for their creativity and persistence: Michael Black (Uni-
versity of Maryland), Lei Chen (University of Rochester), Nirav Dave
(Massachusetts Institute of Technology), Wael El Essawy (University of Roches-
ter), Nikil Mehta (Brown University), Nicholas Nelson (University of Rochester),
Aaron Smith (University of Texas, Austin), and Charlie Wang (Duke University).

We would like to especially thank Mark Smotherman for making a careful final
pass to find technical and writing glitches that significantly improved the quality
of this edition.

We wish to thank the extended Morgan Kaufmann family for agreeing to pub-
lish this book again under the able leadership of Denise Penrose. She developed
the vision of the hybrid paper-CD book and recruited the many people above who
played important roles in developing the book.

Simon Crump managed the book production process, and Summer Block
coordinated the surveying of users and their responses. We thank also the many
freelance vendors who contributed to this volume, especially Nancy Logan and
Dartmouth Publishing, Inc., our compositors.

The contributions of the nearly 100 people we mentioned here have made this
third edition our best book yet. Enjoy!

David A. Patterson John L. Hennessy

Computers
in the
Real World

Saving Lives through

Better Diagnosis

Problem: Find a way to examine internal
organs to diagnose psychological problems
without the use of invasive surgery or harmful
radiation.

Solution: The development of magnetic res-
onance imaging (MRI), a three-dimensional
scanning technology, has been one of the most
important breakthroughs in modern medical
technology. MRI uses a combination of radio-
frequency pulses and magnetic fields to scan
tissue. The organ to be imaged is scanned in a
series of two-dimensional slices, which are
then composed to create a three-dimensional
image.

In addition to this computationally inten-
sive task of composing the slices to create a
volumetric image, extensive computation is
used to extract the initial two-dimensional
images, since the signal-to-noise ratio is often

low. The development of MRI has allowed the
scanning of soft tissues, such as the brain, for
which X-rays are not as effective and explor-
atory surgery is dangerous. Without a cost-
effective computing capability, MRI would
remain slow and expensive.

The two illustrations shows a series of MRI
images of the human brain; the images below
represent two-dimensional slices, while those on
the facing page show a three-dimensional recon-
struction. Once an image is in digital form, a
physician can manipulate the image, removing
outer layers, examining the image from different
viewpoints, or looking at the three-dimensional
structure to help in diagnosis.

The major benefits of MRI are twofold:

m It can reduce the need for unnecessary
exploratory surgery. A physician may be
able to determine whether a patient ex-

MRI images of a human brain, in two-dimensional view

periencing headaches has a brain tumor,
which requires surgery, or simply needs
medication for a headache.

®m By providing a surgeon with an accurate
three-dimensional image, MRI can im-
prove the surgical planning process and
hence the outcome. For example, in oper-
ating on the brain to remove a tumor with-
out accurate images of the tumor, the
surgeon likely would have to enter the
brain and then create a plan on the fly de-
pending on the size and exact placement of
the tumor. Furthermore, minimally inva-
sive techniques (e.g. endoscopic surgery),
which have become quite effective, would
be impossible without accurate images.

There are many new interesting uses of MRI
technology, which rely on faster and more cost
effective computing. Some of the most prom-
ising are

B real-time imaging of the heart and blood
vessels to enhance diagnosis of cardiac
and cardiovascular disease;

m Combining real-time images and MRI
images during surgery to help surgeons

accurately perform surgery, particularly
when using minimally invasive tech-
niques.

m Functional MRI (FMRI): a new type of
application that uses MRI to examine
brain function, primarily by analyzing
blood flow in various portions of the
brain. FMRI is being used for a number of
applications, including exploring the
physiological bases for cognitive problems
such as dyslexia, pain management, plan-
ning for neurosurgery, and understanding
neurological disorders.

To learn more see these references on
the @ library

MRI scans from the National Institutes of Health’s Visi-
ble Human project

Principles of MRI and its application to medical imag-
ing (long and reasonably detailed, but only a little
mathematics)

Using MRI to do real-time cardiac imaging and angiog-
raphy (imaging of blood vessels)

Functional MRI, www.fmri.org/fmri.htm

Visualization and imaging (including MRI and CT
images): high-performance computing for complex
images

MRI images of a human brain in three dimensions

-1 Index

Index

CD information is listed by chapter
and section number followed by page
ranges (CD9.1:1-2). In More Depth
references are listed by chapter num-
ber followed by page ranges (IMD4:5-
6). Page references preceded by a sin-
gle letter refer to appendices.

A

Absolute addresses, A13
Abstractions, 21-22, 24
Accumulator architectures, CD2.19:1-2
Accumulator instructions, IMD2:7
Acronyms, 9-10
ACS, CD6.13:4
Activation record, 86
Active matrix display, 18
Ada, 173
add, 49-51, 301
Adder, 292
add immediate, 58
add immediate unsigned, 172
Addition, 170-176
carry lookahead, B38-47
floating point, 197-201
Address (addressing)
absolute, A13
base, 55
calculation, 385, 390, 392, 402
exception, 342-343
in large-scale parallel processors,
CD9.4:23-25
memory, 54
PC-relative, 98
physical, 511,512, 513-514

translation, 512, 521-524
virtual, 512
Addressing, MIPS
branches and jumps, 97-99, 294-295
decoding machine language, 100-104
mode summary, 100
32-bit immediate operands, 95-96
Addressing modes
IA-32,138
MIPS, 100
RISC, D5-9
add unsigned, 172
Advanced Research Project Agency
(ARPA), CD7.9:9, CD8.3:5,
CD8.11:7
Advance load, 442
Agarwala, Tilak, CD6.13:4
Aho, Al, CD2.19:8
Aiken, Howard, CD1.7:3
Air bags, 281
Algol, CD2.19:6-7
Aliasing, 528
Alignment restriction, 56
Allan, Fran, CD2.19:8
Allocate-on-miss, 484
Alpha architecture, CD5.12:3, D27-28
Alto, 16, CD1.7:7-8, CD7.9:10, CD8.11:7
ALU. See Arithmetic logic unit
ALUOP, 301-305
ALUOut, 319, 320, 327
AMD, 136
Amdahl, Gene, CD5.12:1
Amdahl’s law, 179, 267, 494, CD9.2:9,
CD9.9:40, IMD4:5-6
AMD Opteron, memory hierarchy,
546-550

and (AND), 70, 301, 321, B6
AND gate, CD3.10:5
and immediate, 71
Andreessen, Marc, CDS8.11:7
Antidependence, 439
Antifuse, B77
Antilock brakes, 281
Apple 11, CD1.7:5
Application binary interface (ABI), 22
Applications software, 11
Archeological sites, 236-237
Architectural registers, 448
Architecture. See Instruction set
architecture
Arithmetic
addition, 170-176
division, 183—189
fallacies and pitfalls, 220-224
floating point, 189, 191-220
mean, 257-258
multiplication, 176-182
signed and unsigned numbers,
160-170
subtraction, 170-176
Arithmetic-logical instructions,
292-293, 298
multiple-cycle implementation,
327, 329
single-cycle implementation, 300-318
Arithmetic logic unit (ALU), 177, 179,
184,187, 201
adders and, 292, 294
ALUOp, 301-305
ALUOut, 319, 320, 327
constructing, B26-38
control, 301-303, C4-8

Index

I-2

datapaths and, 286, 292, 294, 296
MIPS, B32-38

multicycle implementation, 318-340
1-bit, B26-29

single-cycle implementation, 300-318

32-bit, B29-36
ARM, D36--38
ARPANET, CD8.3:5, CD8.11:7
Arrays
of logic elements, B18-19
versus pointers, 130—134
Art, restoration of, 562-563
ASCII (American Standard Code for
Information Interchange), 90-91
versus binary numbers, 162
Assembler directives, A5
Assemblers, 13, 107-108, A4, 10-17
Assembly language, 13, 107, A3-10
See also MIPS assembly language
disadvantages of, A9-10
when to use, A7-9
Asserted signal, 290, B4
Assert signal, 290
Associativity, in caches, 499-502
Asynchronous bus, 582-583
Asynchronous inputs, B75-77
Atanasoff, John, CD1.7:3
AT&T Bell Labs, CD7.9:8-9
Atomic swap operation, CD9.3:18
Automatic storage class, 85
Availability, 573
Average Memory Access Time (AMAT),
IMD7:1

Bachman, Charles, CD8.11:4, 5
Backpatching, A13

Backplane, 582

Backus, John, CD2.19:6, 7

Barrier synchronization, CD9.3:15
Base address, 55, 100

Base register, 55

Base stations, CD8.3:9

Base 2 to represent numbers, 160-161
Basic block, 75

Basket, Forrest, CD7.9:9
Behavioral specification, B21
Bell Labs, CD7.9:8-9
Benchmarks, 254-255
EEMBC, 255, IMD4:17-18
kernel, CD4.7:2, IMD4:7-8
SPEC CPU, 254-255, 259-266,
CDA4.7:2-3,IMD4:7-8
SPECweb99, 262-266
synthetic, CD4.7:1-2, IMD4:11-12
Berkeley Computer Corp. (BCC),
CD7.9:8,9
Berkeley Software Distribution (BSD),
CD7.9:9
Berners-Lee, Tim, CD8.11:7
Biased notation, 170, 194
Bigelow, Julian, CD1.7:3
Big Endian, 56, A43
Big-interleaved parity (RAID 3),
576-577
BINAC, CD1.7:4
Binary digits (numbers), 12, 60
adding and subtracting, 170-176
ASCII versus, 162
converting to decimal floating
point, 196
converting to decimals, 164
hexadecimal-binary conversion
table, 62
scientific notation, 191
use of, 160-161
Binary point, 191
Bit(s), 12, 60
in a cache, 479
dirty, 521
fields, IMD2:13-14
least significant, 161
map, 18
most significant, 161
reference/use, 519
sign, 163
sticky, 215
Bit error rate (BER), CD8.3:9
Blaauw, Gerrit, CD6.13:2
Block, Barbara, 156157
Blocking assignment, B24

Block-interleaved parity (RAID 4),
577-578
Blocks
defined, 470
finding, 540-541
locating in caches, 502-504
placement of, 538-540
reducing cache misses with, 496-502
replacing, 504, 541-542
Bonding, 30
Boolean algebra, B6
Booth’s algorithm, IMD3:5-9
Bounds check shortcut, 168
Branch (es)
addressing in, 97-99, 294-295
delayed, 297, 382, 418-419, A41
delay slot, 423
history table, 421
loop, 421-422
multiple-cycle implementation,
327-328, 336
not taken, 295, 418
prediction, 382, 421-423
prediction buffer, 421
taken, 295
target address, 294-296
target buffer, 423
Branch equal (beq), 294, 297, 300-318
Branch/control hazards, 379-382,
416-424
delayed, 297, 382, 418-419
dynamic branch prediction, 421-423
not taken, 295, 418
untaken, 381
Verilog and, CD6.7:8-9
Brooks, Fred, Jr., CD6.13:2
Bubble Sort, 129
Burks, Arthur W., 48, CD1.7:3, CD3.10:1
Buses, 291-292
advantages/disadvantages of, 581
asynchronous, 582-583
backplane, 582
basics of, 581-585
defined, 581, B18-19
master, 594
Pentium 4, 585-587

