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Preface

This book is written for three groups of readers:

(a) Students of physics, engineering and other applied sciences who have

completed a conventional course in differential equations. Many of these
students may realise that the subject is of great practical importance but have
no confidence that they will be able to master the formal mathematics
required.

(b) Professional scientists and engineers who were once in the former
category, but now realise that mathematical models of real systems do throw
up differential equations; and that such equations have a nasty habit of being
different from the textbook examples. After an hour or so grappling with his
old notes and a pile of authoritative but bewildering treatises, the unhappy
member of this group goes in search of a mathematician or uses a computer
and standard software that he only partly understands. In either case he has
isolated himself from the process of solving the equation, and as a result has
diminished his understanding of what the formal or computed solutions mean.

(c) Teachers who need to explain the physical significance of equations and
their solutions in plain language to students of applied science and engineering
whose interests and skills are more often in experimental work than in
mathematics.

The common problem for people in these three groups is that formal
mathematics is an obstacle rather than an aid to understanding.

While it has fong been recognised that the ability to make order-of-
magnitude numerical estimates is an essential skill of the working scientist
and engineer, there is no corresponding method for a ‘back-of-envelope’
treatment of differential equations. What is needed is a method that bypasses
the mathematical difficulties and also emphasises those features of the solution
most useful in the design of practical devices and systems. It is the prime
purpose of this book to fill this need.

The reader will be relieved to find that this does not require the use of any
formal mathematics beyond that learned in sixth-form or first-year university
courses. Instead, much greater use is made of physical and intuitive arguments
of a kind familiar to experimental scientists. We shall often appeal to analogy,
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X Preface

prior experience and experimental evidence, and make use of inference and
hypothesis. Using this approach, the reader who cannot afford to carry a great
weight of specialised mathematical equipment will find he can understand, and
therefore enjoy, mathematical models whose equations are too difficult to
solve by other means.
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Chapter 1

Introduction

1.1 Approximation with understanding as its goal

Mathematical models usually describe either processes or devices. In
processes, the system is changing with time; in devices, the changes studied
may also be with time, or the interest may be in the way in which variables such
as temperature or concentration change with position within the dewice. In
both cases, rates of change are involved, so the mathematical model lepds 1o a
differential equation. The principal object of this book is to solve differential
equations 50 as to obtain a broad understanding of the systems they describe,
using & minimum of formal mathematics.
Differential equations may be classified in order of increasing difficulty:

(a}Very simple equations with simple and well understood solutions.

(®) Equations that can be solved exactly, but whose solutions are so
complicated, or contain such unfamiliar functions, that only a specialist can
understand their physical significance. .

() Equations that cannot be solved at all by formal mathematics. There are

" no useful exact solution methods, for instance, for the majority of nonlinear

equations.

The equations used-for teaching and examination purposes are deliberately
chosen mainly from the first class, with occasional examples from the second.
Unlortunately, many equations arising from practical problems belong to the
second or third clssses, and their formal solution js either impossible or

ysically obscure.
phThe k{y to physical understanding of these equations is the use .of
approximation. Exact solutions are complicated and may need unl:amnhar
functions because, by definition, they must describe exactly every deta.:l of the
changes in the variables. By contrast, approximate solutions can strip away
the overlying detail to show the essential relationships between the physical
variables. What is more, these relationships can bs expressed in symbols and
words that are familiar to all scientists and engineers. '

As an illustration, considsr an cquation that can be used as a mathe-
matical model for the chemical reaction:
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A+2B—C.

iy

The equation is

E—K(a nj(b W-Zn)l o (LD
sroiin s 5% 5
where a and b are the numbers of molecules A and B at t=0, and n is the
number of molecules C after time ¢.

The exact solution is

"i 1 ! _l 2 1-2n/b
_K-[za—b<b_2,, b>+(2a—b)2 1“(1—n/a_)]' (1.2)

This result is too complicafét (8 giveaibireet Hnswar folthe inost practical
questions about the reaction, such as ‘What does the curve of n against ¢ look
ke P7anid “How does tHEShapEof thiS titlvetdépend pon’a, B aNd K the
COTtaTIts THIHE éqdati’dn’”fy‘c‘oﬁf&st’ Yhe a“ﬁp&oxifna{e s’o‘fution‘f (@Ssiring-
tﬁe* rdabtidn"éndS"thr{“ﬁP?ﬁg’mo‘!&ﬁl@s’ gl are asch' up) §wér§ t‘hbse
dﬁ! fbﬁ?d??écﬂy“h Goiesy dity :N’I.m 3 HOLIE LTy T B :

1 otdi e boviovel o1

v ,;@g%b@.metm)t iy

R “; W2 %)ul“ shezihs

Ll ;

Ih" words, SOiuhbn 'fT‘S*)'stai’éh tﬁ‘il’"ﬁ 1r§cté Ses xppi‘mmﬁife]”y éxpénehtiaily
foth néo af =046 4 finl valaé Halty, Wiﬁf imeEco 'fjf’gwén ?y fsrmula
(14), Hndf iy NS S S
7 Ffig exporeétitiatciirve a;fﬂ*it% e consgint afef"fi”‘flmr)r&gash‘rséieﬁce and
elligiiiéering,’ 40l the curveCof i Ugatnst 't igiire 1.1y caﬁ”ﬁeﬁtfu‘fed and’
sketched immediately, using either the mathematical descnptlon (f3yor its’
verbal quiVRIENS. . .. ooy soimaidin s bae yaeio s s saalivuni:
The answertathe mcond Guestion; aheut the&ﬁfect of ehaasmgqhb and K is.
given in the-compact formula- {1:4) for  the time. constang o Inimosds; 3:is
inversely. ‘prepostional: tg, g;.b and K subject:to: a-enppection: that thas:a
relatively slow variation with the ratio b/a’. Formulae like (1.4).wvhich show.the.,
way in which the most.important parameters.of the system depend gpon.gach
other,: will :be. called ;design: farmulge, -since - they.embodly »'me,rmential
relationships needed by.: engincers who have te lesign: pracsical aysterns.  :
.The example shows what is meant by solving for physical. undcrgtax;dmg ,
What js required first is;a solution, that can:be. pictured; graphically and,
deseribed -in. simple- and faxml' r words; the.secand. requirementis a. des:gn.
formula showing the most ampertant relatxonshmgbgtween thc paa‘ameiets Jo,

t Derived in prdbiem T MU SR L',""f'f . - '.
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F f

Figure 1.1 Approximate solution of equation (1.1).

the conventional mcthods of soluuon a mathematical solution is obtamed
first, and from this graphs can be plotted and desxgn formulae derived. This
means that the graphs and the de51gn formulae, which may be quite slmple to
understand, are obtained as secondary products of the primary mathematical
investigation, which may be very complicated.

The special feature of the approximate method of solution used in this book

_ is that it reverses this procedure. The first step is to use physical rather than
' mathematical arguments to make a qualltative sketch (os for short) of the

likely form of the graphical solution; the second step is to use the method of
trial function (or TF) approximation to add more detail to the graph, and also

to find the design formula directly. This qualitative sketch,/trial function (QsTF)

method thus goes straight to what is needed for physical understandmg,

instead of usmg the conventional roundabout route. The consequence is thar

the method is generally quicker and involves fewer mathematical sfeps’that’

exact “procedures. A furthér consequence is that, by avonding the fdrmal”
mathematical difficulties, this approximate -approach - works for ‘many”

equations that are impossible to solve exactly in closed form.

R L Y T
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1.2 Trial function approxiniation " =

ISR

Sinée frial MCHSA Fpproximation:: iwﬁf“cir :§ “thé'séconid step ofhit >om
et vﬁafy'be UfTatiifat we ShatFlirst@ecribest in brief outhing, leadmy atlt
the BELHIK O the! $le ps 716 e filled" #r latet=Tt™is started By ch&oSmg‘ié‘:
mathematical function, calléd’ thé' trial” functivi’ (6¢ 17 for $hort); which 1§
believed to be a good approximation to the exact solution; this TF always

contains one or more unknown parameters. The second step is to combine the

TF and the equation:-usihg & Process edNed rresidual minimisation, tofind

farmulae for the unknown parameters in terms of the physical constants of the

system being studied.

- i B I
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4 Introduction

Figere 1.2 A ball-bearing oscillating in a smooth tube bent to produce a
restoring force proportional to the cube of the displacement.

As an illustration, consider the motion of a ball-bearing oscillating in a glass
tube that is bent into a curve such that the restoring force depends upon the
cube of the duplaoement u (figure 1.2). The governing equatnon, ignoring
frictional losses, is

dz
a — +cud=0 (1.5)

and the auxiliary conditions are that the ball-bearing is released from rest ata
displacement u, when t=0. Expressed mathematically, this is

u(0) = u, u'(0)=0.
’ [initial velocity zero]
The goal of solving this mathematical model is to find how the frequency f of
the oscillation depends upon the physical parameters; in other words, the goal

is a design formula for f. The methods for choosing trial functions will be
explained later. In this case the TF used is

u® =y, Cos wt. (.7

This can be seen to ﬁt the auxiliary conditions (1.6) and to be a physically

reasonabic way of describing an oscillation of amplitude u,. The unknown
parameter is the angular velocity w.
" The second stage is to find an approximation for this unknown parameter
. by residual minimisation. Again the details of this process will be discussed in
great detail later; for the present, the important point is that it involves only a
few lines of mnplc mathematics to reach the result

(1.6)

0=0.87c"2u,, (1.8)
" The relationship between frequency and angular velocity is
[=02x (1.9)

80 the design formuia for f is
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f—o—f:c”zu =0.14c"%u, (1.10)

This is the required design formula relating the most important characteristic
of the performance of the oscillator, i.e. frequency f, to the physica] constantsc
and u, present in the mathematical model.

The directness and simplicity of TF approximation contrasts with the
tediousness of the formal method of solution. First, the exact solution of the
equation, involving elliptic functions, would have to be found; then the rather
unusual periodic properties of this solution recognised; and finally, not
without some difficulty, the period found from approptiate tables. After all
this, substantially the same design formula is obtained, differing only in that
the numerical constant would be 0.135 instead of 0.14.

1.3 The qualitative sketch

The brief account of the TF approximation in the last section will have raised
many questions. The first step, for instance, is to choose a 1F that is believed to
be a good approximation to the exact solution, and it is by no means clear how
this is to be done. The rather scattered descriptions of the TF method in the
literature are of little help; they do not describe any general technique for
choosing a TF, and physical understanding is seldom their prime objective. We
shall show in this and the next section that, for physical equations that describe
real processes or devnces, there is a systematic method for finding a suitable
trial function.

The key to the problem is that for physical equations it is almost always
possible to sketch a graph of the solution without using the equation at all. In
the case of the chemical reaction discussed in §1.1, for instance, it is clear
without any mathematics that the number a of molecules C must start from
zero and increase with time. Intuition also suggests-that the curve of n against ¢
must be smooth, since there are no mechanisms to cause any humps or sudden
changes in direction. Finally it is clear that the number of molecules C is
eventually limited by exhaustion of one of the reactant molecules A or B.
Putting these three statements together gives a picture of a smooth curve rising
from n =0 and eventually flattening off at a steady value. When such a curve is
sketched its shape must look like figure 1.1. Without any reference to the
equation, therefore, we have been able to sketch the approximate shape of the
solution curve, using only the initial conditions and physical commonsense.

A sketch of the expected sotution made in this way without formally solving
the equation will be called & qualitative sketch. It is drawn by first carefully
considering any auxiliary conditions, which will usually fix the beginning and
end of the curve, and then using physical intuition to fill in the intervening
curve. In Chapter 2 and in later examples we shall show how this physical
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intuition can be supplemented by analogy with known solutions of simpler
equations and direct inspection (without formal solution) of the equation itself.

The drawing of the qualitative sketch is the most important single step in
solving with physical understandmg It serves three purposes:

(a) It.goes a long way to answering the questxon ‘What does the solution
look like?

(b) It forces the solver to think in the first instance about the physics of the
real apparatus, rather than about the abstract mathematical equation.

(c) As we shall show in the next section, it provides a systematic way of
choosing the TF.

Two more ingredients are needed to complete our physical' understanding,
as defined in §1.1. First, although the qualitative sketch gives the shape of the
curve, the scale of one or other of the axes is usually missing. Secondly, the.
appropriate design formula for the problem, relating the performance to the
constants of the system, is wanted. Both these needs are supplied by the 1F
approximation, and we shall next show how the qualitative sketch makes the
choice of TF more systematic. The two stages, the making of the qualitative
sketch (or @s), followed by the TF approximation, together make up the QSTF
method of solving with physwal understandmg

14 . Standard functions

When the qualitative sketches are made for a number of practical problems
chosen from various fields, it turns out that they almost always look like one of
the curves in figure 1.3(a)~(e). These curves may be classed as either sinusoidal -
(figure 1.3(a)), exponential (figure 1.3(b) and (c)) or parabolic (figure 1.3(d) and:
(e)). For some less common auxiliary conditions, the curves-are displaced. An
example is shown in figure 1.3(f), which is just the curve of figure 1.3(b)
displaced upwards and to the right. The three shapes are so distinctive that
they can be 1mmed1ately tecognised even' when they are displaced, and the
curve of figute 1.3(f) can be classed as exponential without. -any difficulty.

There are good physical reasons why these graphical shapes are so common
as solutions to physical equations. The sinusoid, with its repeated maxima and
minima, is the simplest curve that can represent-an oscillation of constant’
amplitude and frequency, and such oscillations occur in every branch ‘of
science. Simifarly, the exponential, characterised by its long ‘Pldfeai; i8:the
simplest curve that can describe a smooth -changé eading by becothitig
asymptotxc to a steady state, behavieur typiéal éfchanges of: sta"teoccdmng in
many different sciences: Finally, the: parabola is thesimplest curve character:
ised by symmetry about & single-extréirum: and such symmetry’ is a ¢ommon-
factor i & whole variety of ‘dpparatys’ and &ches T!iis cfasnﬁcauon df

HECNE - LA U T B it
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{a) v=cos x

. (E, u=1-x? .

> ’ - 1 ‘ B 4
Figure 1.3 Curves of famlhar functions that commonly occur as the

solutions to physical equations: (a) sinusoidal, (b)and (c) exponermal (d) .
and (e) parabolic, and (f) dxsplaccd exponential.

quahtatlve sketches into one of three classes glves a systemanc basxs for the
choice of TF. . . :

-.Fhe functions used to generate the curves-in ﬁgure 1.3 cannot. be used
directly as TFs since. they do not contain any unknown parameters, which are
essentialfor the finai step of the TF approximation. The simplest-useful forms of
Tr corresponding.to the three kinds of curve are: - 2 .

'smuso:dal S e
* : 1}4=:4c'os(,4¢‘)t_"‘ T i - - (1.11)

(S L N AR 1
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exponential

u=Ae ' u=A(l—e"") (1.12)
parabolic :
u=A(l - x?/1%). (1.13)

These each contain two parameters that have a clear physical meaning: 4 is
the amplitude of the cosine wave and for the exponential and the parabola it is
the height of the curve; -, T and I respectively correspond to the frequency
(f = w/2r) of an oscillation, the time constant of a change and the half-width of
a symmetrical curve. If the qualitative sketch is displaced, then constants must
be added to these simple trial functions to shift the origin of the axes. The
displaced curve of figure 1.3(f), for instance, corresponds to

u=u,+Ae "t

where u, =% and t,=1 are constants describing the shift of origin. When
examples are studied, it will be seen that such additional constants always have
a clear physical interpretation.

. The cosine, exponential and parabola, in either their simple or displaced
forms, will be called the three standard functions of approximation or more
simply the standard fimctions. They form the basis both for studying the qstr
method and for using it to solve equations. The technique of the osTF method is
best learnt by first mastering problems for which the standard functions can be
used as Trs. This is the method followed in this book, in which the technique is
first given with worked cxamples for exponential Trs (Chapters 3 and 4), and
then for parabolic (Chapter 5) and cosine Trs (Chapters 6 and 7). Once the
techniques for the standard functions are mastered for ordinary differential
equations, it is possible to extend their use to partial dﬂemml equations
(Chapters 8—10). ,

At the end of each chapter a number of exercises (for practising techmques)
" and problems (for applying them) arc given. Like the examples in the main text,
these are carefully chosen to avoid redundancy, and they often introduce new
points or extensions of the method. Some of the working in the later chapters
presupposes that examples in earlier chapiers have been worked through; in
particular, it is impossible to understand the chapters on partial differential
equations without a firm grasp of the ostr method applied to ondmry
differential equations.

In the examples, the qualitative sketch " ﬁm drawn and recognised as
having one of the three standard shapes; it is then compared with graphs of the
corresponding standard functions in their simple and displaced forms. The
graph that matches the qualitative sketch is picked out and the corresponding
function is the 1F for the problem. This procedure automatically leads to useful
results. The qualitative sketch ensures that the corresponding T1r is physically
reasonable and conforms to the auxiliary conditions. The use of the standard
functions means that any mathematics will be relatively straightforwaed and
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familiar, and therefore clearly understood. Finally, because the standard
functions contain only the most important parameters, their use guarantees
that the TF approximation will yield a design formula of direct practical
importance.

As mentioned in §1.2, the last stage of the TF approximation is residual
minimisation. This stage can be made quite simple, but the technique is best
learnt by following some examples, and is therefore first introduced in Chapter
3. The techniques for the three standard functions differ only in small details,
so that the method beconses more and more familiar as more equations are
studied. This is in direct contrast to the ffethods of formal mathematics, in
which new and often highly specialised techniques and functions have to be
learnt as each new type of physical equation is encountered.

Once the osTF method using standard functions is mastered, it is possible to
tackle some of the less common problems that need nonstandard TFs (see
Chapter 11). Very often, however, the standard TFs can be adapted slightly to
meet the new circumstances, and a number of examples of such adaptations
are given in the appropriate chapters alongside standard problems.

1.5 Useful accuracy

It is seldom in applied science or engineering that exact solutions are required.
This is for two reasons. The first is that the equation itself is not an exact
description of the system that it models. Some terms may be omitted because
they are ‘small’, which may mean anything from 10~ to one-third of the total.
Other terms are approximate because they include physical parameters or
functions that are themselves approximate. For example, in an equation of
heat power balance, loss by radiation and conduction might be neglected,
while the convective loss is described by a term based on an empirical law of
dubious validity, involving a parameter—the heat transfer coefficient—which
is not known accurately and which depends on several uncontrolled factors.

The second reason why exact solutions are seldom required by the applied
scientist or engineer is that the use to which the solutions are to be put does not
warrant it. One of the arts of good applied science is to achieve accuracy
adequate for a particular purpose. The pursuit of excessive accuracy is both
time-consuming and costly. It is a strange fact that this is recognised in
experimental science, where one more significant figure may increase the cost
of a measurement 10-fold, whereas, in calculations performed on the same
system, much time is often wasted in seeking accurate solutions to inaccurate
governing equations. It is as if the mathematical form in which the problem is
expressed exerted some kind of hypnotic influence over the solver, tempting
him to pursue solutions that are mathematically respectable but physically
unrealistic or even meaningless.

In the early stages of experimental work, particularly in the course of



