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Preface

This book has been designed for a final year undergraduate course in stochastic
processes. It will also be suitable for mathematics undergraduates and others
with interest in probability and stochastic processes, who wish to study on their
own.

The main prerequisite is probability theory: probability measures, random
variables, expectation, independence, conditional probability, and the laws of
large numbers. The only other prerequisite is calculus. This covers limits, series,
the notion of continuity, differentiation and the Riemann integral. Familiarity
with the Lebesgue integral would be a bonus. A certain Jevel of fundamental
mathematical experience, such as elementary set theory, is assumed implicitly.

Throughout the book the exposition is interlaced with numerous exercises,
which form an integral part of the course. Complete solutions are provided at
the end of each chapter. Also, each exercise is accompanied by a hint to guide
the reader in an informal manner. This feature will be particularly useful for
self-study and may be of help in tutorials. It also presents a challenge for the

lecturer to involve the students as active participants in the course.

A brief introduction to probability is presented in the first chapter. This is
mainly to fix terminology and notation, and to provide a survey of the results
which will be required later on. However, conditional expectation is treated in
detail in the second chapter, including exercises designed to develop the nec-
essary skills and intuition. The reader is strongly encouraged to work through
them prior to embarking on the rest of this course. This is because conditional
expectation is a key tool for stochastic processes, which often presents some
difficulty to the beginner.

Chapter 3 is about martingales in discrete time. We study the basic prop-
erties, but also some more advanced ones like stopping times and the Optional
Stopping Theorem. In Chapter 4 we continue with martingales by presenting

xi



xii Preface

Doob’s inequalities and convergence results. Chapter 5 is devoted to time-
homogenous Markov chains with emphasis on their ergodic properties. Some
important results are presented without proof, but with a lot of applications.
However, Markov chains with a finite state space are treated in full detail.
Chapter 6 deals with stochastic processes in continuous time. Much emphasis
is put on two important examples, the Poisson and Wiener processes. Various
properties of these are presented, including the behaviour of sample paths and
the Doob maximal inequality. The last chapter is devoted to the It6 stochastic
integral. This is carefully introduced and explained. We prove a stochastic ver-
sion of the chain rule known as the Itd formula, and conclude with examples
and the theory of stochastic differential equations.

It is a pleasure to thank Andrew Carroll for his careful reading of the final
draft of this book. His many comments and suggestions have been invaluable
to us. We are also indebted to our students who took the Stochastic Analysis
course at the University of Hull. Their feedback was instrumental in our choice
of the topics covered and in adjusting the level of exercises to make them
challenging yét accessible enough to final year undergraduates.

As this book is going into its 3rd printing, we would like to thank our
students and readers for their support and feedback. In particular, we wish
to express our gratitude to laonnis Emmanouil of the University of Athens
and to Brett T. Reynolds and Chris N. Reynolds of the University of Wales
in Swansea for their extensive and meticulous lists of remarks and valuable
suggestions, which helped us to improve the current version of Basic Stochastic
Processes.

We would greatly appreciate further feedback from our readers, who are
invited to visit the Web Page http://www.hull.ac.uk/php/mastz/bsp.html
for more information and to check the latest corrections in the book.

Zdzislaw Brzezniak and Tomasz Zastawniak

Kingston upon Hull, June 2000
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1

Review of Probability

In this chapter we shall recall some basic notions and facts from probability
theory. Here is a short list of what needs to be reviewed:

1) Probability spaces, o-fields and measures;

3

)
2) Random variables and their distributions;
) Expectation and variance;

)

4) The o-field generated by a random variable;

5) Independence, conditional probability.

The reader is advised to consult a book on probability for more information.

1.1 Events and Probability

Definition 1.1

Let 2 be a non-empty set. A o-field F on {2 is a family of subsets of 2 such
that

1) the empty set @ belongs to F;
2) if A belongs to F, then so does the complement 2\ A;
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3) if Ay, As, ... is a sequence of sets in F, then their union A; U Ay U - - - also
belongs to F.

Example 1.1

Throughout this course R will denote the set of real numbers. The family of
Borel sets F = B(R) is a o-field on R. We recall that B(R) is the smallest
o-field containing all intervals in R.

Definition 1.2

Let F be a o-field on 2. A probability measure P is a function
P F -[0,1)

such that

1) P(£2) = 1;

2) if Ay, Az, .. are pairwise disjoint sets (that is, A; N .A4; = @ for ¢ # j)
belonging to F, then

PAAud,Uu--)=PA)+PA)+ - .

The triple (§2,F,P) is called a probability space. The sets belonging to F

are called events. An event A is said to occur almost surely (a.s.) whenever
P(A) = 1.

Example 1.2

We take the unit interval 2 = [0, 1] with the o-field F = B([0,1]) of Borel
sets B C [0,1], and Lebesgue measure P = Leb on [0,1]. Then ({2, F,P) is a

probability space. Recall that Leb is the unique measure defined on Borel sets
such that

Lebla, bl =b - a

for any interval [a,b]. (In fact Leb can be extended to a larger o-field, but we
shall need Borel sets only.)

Exercise 1.1
Show that if Ay, A,, ... is an expanding sequence of events, that is,

Ay CA T,
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then
P(Al U 442 u-- ) = hm P(An)
n—oo
Similarly, if Ay, Ay, ... is a contracting sequence of events, that is,
Al D4, D,
then

P(A NA N ) = lim P(A,).

n—oc
Hint Write A, U A2 U -~ as the union of a sequence of disjoint events: start with
Ai, then add a disjoint set to obtain A; U 43, then add a disjoint set again to obtain
A; U A2 U Aj;, and so on. Now that you have a sequence of disjoint sets, you can use
the definition of a probability measure. To deal with the product A; N 420 - write
it as a union of some events with the aid of De Morgan’s law.

Lemma 1.1 (Borel-Cantelli)

Let A;, A,,... be a sequence of events such that P(A4;) + P(A)) + - <
and let B, = A, UA,,;U---.Then P(ByNByN---) =0.

Exercise 1.2
Prove the Borel-Cantelli lemma above.

Hint By, B2, ... is a contracting sequence of events.

1.2 Random Variables

Definition 1.3
If 7 is a o-field on 2, then a function £ : 2 — R is said to be F-measurable if
{¢€ B}eF

for every Borel set B € B(R). If ({2, F, P) is a probability space, then such a
function £ is called a random variable.

Remark 1.1

A short-hand notation for events such as {£ € B} will be used to avoid clutter.
To be precise, we should write

{we N:&(w) € B}



