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ABSTRACT

By using pullbacks, we obtain a description of finitely generated modules
over the integral group ring of a non-abelian group of order pq. The descrip-
tion is detailed enough to obtain information about the behavior of the modules
in direct sums. We make the description more precise by relating it to the
locally free class group of the integral group ring.
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INTRODUCTION

Let G be a non-abelian group of order pgq (p and q distinct primes).
In this paper we solve the problem of describing all isomorphism classes of
finitely generated left ZG-modules and the behavior of these modules in direct
sums, where ZG 1is the integral group ring of the group G. We consider ZG-
modules 1in general and not merely ZG-lattices; that is, we do not assume that
modules are torsion-free as additive groups.

The motivation for this work is that there seems to be no non-commutative,
non-hereditary, non-artinian noetherian ring all of whose finitely generated
modules are known. The technique used here is to represent the ring ZG as a
pullback (in chapter 1), and then adapt the methods of Levy [2], [3], and [4].

Our main result (in chapter 10) is to define a function "class" «c1( )
from the category of (finitely generated left) ZG-modules into the (finite) set
CLS{ZG) of isomorphism classes of fractional (not necessarily full) left ZG-
ideals in the quotient ring QG of ZG. The function ¢1( ) is defined in
such a way that, for arbitrary finitely generated left ZG-modules M and N,

Mt = Nt (

cl(M) = cl1(N).

localization at t) at all primes t, and
(1) M= N if and only if

(This is analogous to the situation for modules over Dedekind domains, for
which a finitely generated module is determined up to isomorphism by its
localization at all prime ideals and its Steinitz class.) In addition, c1( )
is defined so that, if H 1is a fractional ZG-ideal in the class c1(M) for
some finitely generated left ZG-module M, then H e c1(H) = c1(M).

We also define an operation "+" on CLS(ZG) in such a way that

(2) cl(M o N) = c1(M) + c1(N)

for any finitely generated left ZG-modules M and N. CLS(ZG) forms a semi-
group under this operation and decomposes as the disjoint union of a finite
collection of subgroups, where each subgroup itself is just a genus of frac-

Received by the Editors September 11, 1984.
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tional ideals. (Two modules are in the same genus if they are locally iso-
morphic at all primes.)

We show that every non-zero fractional left ZG-ideal is a projective
module for some Z-order between ZG and its quotient ring QG. Those isomor-
phism classes of fractional ideals which are in the image of c¢1( ) are actu-
ally locally quasi-free. (See corollary 10.20 for definitions.) Hence each

genus in the image of c¢1( ) forms a locally quasi-free class group, and we
show that its order divides the order of the locally free class group of ZG.

In chapter 11 we apply this numerical information, along with (1), to
questions concerning local versus global isomorphism and direct sum decomposi-
tions of finitely generated left ZG-modules. We show that the Krull-Schmidt
theorem fails for direct sum decompositions of finitely generated ZG-modules
(for G as above), but it usually holds for direct sum decompositions of finite-
1y generated modules over localizations ZtG' (See theorems 11.1 and 11.3.)

We also use (1) to show that the following are equivalent for finitely
generated ZG-modules (see theorem 11.4):

(a) Modules cancel from direct sums of modules.

(b) Lattices cancel from direct sums of lattices.

(c) Free modules cancel from direct sums of lattices.

(d) q=2.

Even though ordinary cancellation fails for q # 2, we know, by Goodearl
[1], that power cancellation holds for finitely generated ZG-modules. (See
also Guralnick [2].) That is, if Me X =Me Y for finitely generated ZG-mod-
ules M, X, and Y, then X(d) = Y(d) for some d. In theorem 11.8, we show
that a single exponent d works for any choice of M, X, and Y, where d =1
if q=2, and d=q if q > 2. In corollaries 11.10 and 11.11 we show that

the cardinality of the genus of each finitely generated ZG-module M divides
the order of the locally free class group of ZG, and if M and N are in
the same genus, then M(e) = N(e), where e divides the order of the Tocally
free class group of ZG. (See also Guralnick [1], [2].) This gives a second
proof that power cancellation holds, but the bound e obtained is not as sharp
as the bound d obtained above.

As a final application, we compute the projective dimensions of finitely
generated ZG-modules without artinian direct summands. For such a ZG-module M,
we get that pdim(M) <1 if c1(M) 1is projective, and pdim(M) = » other-
wise. (See theorem 11.15 and corollary 11.16.)

The proofs of (1) and (2) above are given in chapter 10 and rely on the
structure theory developed in chapters 1 through 9, which we now outline.

In chapter 1 we express ZG as a certain subring of the hereditary ring
JAN: Z[gq] ® N\, where gq is a primitive qth root of unity, and A is a
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certain (noncommutative) hereditary noetherian prime ring.

In chapter 2 we introduce the notion of a ZG-diagram, a certain configura-
tion of modules over the coordinate rings Z, Z[cq], and A, together with
certain module homomorphisms. The collection of ZG-diagrams forms a category.
We define a functor M( ) from the category of finitely generated ZG-diagrams
to the category of finitely generated ZG-modules and show that M( ) 1is a rep-
resentation equivalence. Thus we reduce the problem of classifying ZG-modules
to that of ZG-diagrams.

In chapter 3 we describe finitely generated modules over the coordinate
rings Z, Z[cq], and A, summarizing results of Rosen, Eisenbud, and Griffith.

In chapter 4 we convert the problem of classifying ZG-diagrams to a matrix
problem by fixing direct sum decompositions of the modules that occur in these
diagrams and replacing homomorphisms by matrices over fields. We prove a theo-
rem which describes the set of matrix operations which can be performed on the
matrices of a diagram without changing the isomorphism class of the diagram.
Thus the matrix problem is to describe some canonical form of the matrices of
a diagram using the given matrix operations. In chapter 5 we consider the ef-
fect on ZG-diagrams of localization and completion at the primes of Z. 1In
chapter 6 we translate into our notation the solution of the matrix problem in
Klingler and Levy [1].

Using these results, in chapter 7 we give an explicit description of all
finitely generated indecomposable artinian ZG-modules. Since artinian modules
are well-behaved in direct sums, we can, for the most part, ignore them, and so
in chapters 8 and 9 we give an explicit (and unfortunately quite technical)
description of all finitely generated indecomposable ZG-modules without artin-
ian summands and characterize their behavior in direct sums. To apply these re-
sults, in chapter 10 we restate this behavior more conceptualily in terms of
projective modules of Z-orders between ZG and Z e Z[z ] ® A.

For the remainder of this paper we fix the group G and the primes p
and q as in the following proposition.

Proposition 0.1: If G 1is a non-abelian group of order pq, where q < p

are primes, then q | (p - 1) and

(3) G = <X,y | xP =9 =1, yxy_l = xKs.

where k is a primitive gth root of unity modulo p. Conversely, if p and g
are primes such that q | (p - 1), then there exists a unique non-abelian
group G of order pq (up to isomorphism) given by (3).
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Proof: See Hall [1], theorem 9.4.3.0

Throughout this paper we assume that all modules are left modules, and,
except in chapter 2, we assume that all modules are finitely generated.

I would like to thank the referee for the numerous improvements suggested
for the last two chapters, and I would especially Tike to thank my thesis ad-
visor, Lawrence Levy, for the help and guidance he gave me in this project.
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1: ZG AS A MULTIPLE PULLBACK

Definition 1.1: Let R
epimorphisms be given:

1""’Rm be rings and let finitely many pairs of ring

>> R, <<

(1) ¥ K i(k)

i(k)
where 1 <k <n and 1< i(k) < j(k) <m. We call (1) the subdiagram Qk.
We say that the subdiagrams Ql,...,Qn are independent if, for each c,

1 <c<m, the natural map is onto which maps R. to the direct sum of all
those .ﬁk to which RC can be mapped (by the fk for which (k) = ¢ and
the 9y for which j(k) = c). We define the (multiple) pullback of

R1 @ B Rm determined by the independent subdiagrams Ql""’Qn to be the

ring R = {(ry,...,r;) e Ry @ -+ @R | fk(ri(k)) = gk(rj(k)) for
1 <k < n}.

In this section we describe ZG as a multiple pullback of three
coordinate rings, where two of the coordinate rings are Dedekind domains, and
the third is a hereditary order in a simple artinian ring. We begin by
describing ZG as an ordinary pullback of a group ring and a skew group ring,
where the groups are of prime order q. (Recall that |G| = pq and
q | (p-1).) For details concerning algebraic number fields and, in partic-
ular, cyclotomic extensions, see Curtis and Reiner [2], section 4H.

Notation 1.2: Let z_ be a primitive pth root of unity (in the complex
numbers). Note that [Q[gp]:Q] = p-1, and Z[cp] is the ring of algebraic
integers in Q[cp]. Recall that we set G = <x,y | xP = yq =1, yxy'1 = xk> .
where k 1is a primitive qth root of unity modulo p. Let o ¢ Gal(Q[cp] | Q)
be such that o(cp) = c;. Let H = <o>< Gal(Q[z ]| Q), Tlet Ko be the
fixed field of Q[gp] under H, and let R0 = Kof\ Z[z ], the ring of
algebraic integers in K,. Since |[H| = q, we have [Q[cp]:KOJ =q, and
Qlz,]

we get the following diagram:
2Le,1—

KO p-1

/Q
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We let A denote the skew group ring Z[gp] oH = ¥ Z[gp]uh and A
heH
denote the skew group ring Q[cpJOH = 3 Q[gp]uh, where multiplication is
heH
given by UpUpe = Uppo and o = h(a)uh for h,h' ¢ H and scalars o in

Z[;Uj or Q[cp]. Clearly A is an R0 order in A. A 1is in fact a
crossed-product algebra (see Reiner [1], section 29 for details), and as such
A is a simple Ko-algebra. We have A = Mq(KO), the ring of g x g matrices
over KO’ where Q[;p] is itself a simple left A-module.

Theorem 1.3: The skew group ring A = Z[cp]°H is a hereditary order in the
simple artinian ring A = Q[cp]oH.
Proof: See Rosen [1], Temma 1.3.1, or Curtis and Reiner [2], section 34E. [

Now define maps ¢ and Y in the diagram

PAC >> ? X —> Cpul yr—u,
Y
(2) J LYo by I [ ¥ and I
v ® v v ) v v ® v
ZH >> ZpH 11— Or—>0

where ZH s an ordinary integral group ring and ‘TpH a group algebra, 7b
denoting the ring of integers modulo p. It is straightforward to check that
all of the maps are ring epimorphisms and that the diagram commutes.

Lemma 1.4: Diagram (2) expresses ZG as the pullback of ZH & A determined
by the maps ¢ and V¥; that is, 2G = {(a,b) ¢ ZH @ A | ®(a) = ¥(b)}.

Proof: See Galovich, Reiner and Ullom [1], section 2, or Curtis and Reiner
[2], section 34E.O0

The group ring ZH itself can be expressed as an ordinary pullback of Z
and Z[cq], where cq is a primitive qth root of unity.

Lemma 1.5: The diagram

ZH >> Z[Eq] g &,

(3) g where I ]g
v fO ! 0 v fo v 0
z >> 7 l———> 1
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expresses ZH as the pullback of Z @ Z[cq] determined by the maps fO and
9o where 7_ denotes the ring of integers modulo q. Thus ZH = {(a,b) ¢
z &z ]| fola) = g4(b)}.

Proof: See Levy [3], 1.13.0

Lemmas 1.4 and 1.5 together allow us to view ZG as a subring of
AN Z[;q] ® A determined by the maps @,W,fo, and 9 of diagrams (2) and
(3). It remains to disentangle the maps to express ZG as a multiple pullback
of Z o Z[gq] @ A,

Notation 1.6: Let a = 1,a2,...,a be integers such that 51,...,5§ are
the distinct qth roots of unity in 7b. (They exist since q | (p-1).)
We define subdiagrams Qi’ 0<i<g, as follows:

90

0 - 9
Z[gq], where 1 <——¢

QO: Z q

(Note that QO is just (3) of lemma 1.5, and ker(go) = <gq-l>, a maximal
ideal of Z[gq].)

L T 9 ) 9
Ql. Z >> Zp << N, where 3 =1 et M,
9
and 1 «—————4;p
For 2 < i <q, define
Q [z ] i 7z ) h ] i
T > << <
e Cq > D 4 where —_— D
i - S
and Cq' > ay < = U

{Note that ker(fi) equals Pi = <gq-ai,p>, a maximal ideal of Z[gq], for
2 <1i<gq, and in fact pZ[gq] = PZ"'Pq’ where PZ""’Pq are distinct

prime ideals. See Curtis and Reiner [2], section 4H for details.)

Theorem 1.7: ZG is isomorphic to the pu]]back of Z o Z[gq] & [ determined
by the independent diagrams QO’ Ql""’ Qq defined above. Thus ZG =

I ~ ~ = = =
Hasb.e) e Z o Zlz ] o n | fola) = golb), fy(a) = gy(c), and f,(b) = g;(c)
for 2 <1 <q}.

Proof: If we let Z [t] be the polynomial ring over 7p in the indeterminate
t, then 7p[t]/<tq-1> 2 7bH via the map induced by t+——> 0. But t9-1
splits into 1linear factors in 7b[t], so that using the Chinese remainder
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th , ZH=Z [t]/<t%-1>=2T7 [t)/<t-a,> ® --- ®7 [t]/<t-a >=Z © --- ® 7,
eorem, Z, p[ 1/< p[ 1/<t-a; p[ 1/< 3> =1, Z,

where '51"--’5§ are as in notation 1.6.

Now let @. be the map @:ZH >> 75H (in (2)) followed by the

projection to '7p[t]/<t451> as above, and let Wi be the map Y¥:A >> ZpH
followed by the projection to <7p[t]/<t—31>. Note that ¢i:ZH >> fb is
given by @1(0) = 3} and ¢i(n) =nce fp for neZ, and YA >> 7

is given by Wi(ua) = a5, Wi(gp) =1c¢ Zp, and Wi(n) =ne Zp for neZ.

This allows us to split the diagram (2) into separate diagrams:

(4) ZH

Given (a,b) € ZH® A, we have ¢(a) = ¥(b) 1if and only if @i(a) = Wi(b)
for 1 <1 <gq, sowecan restate lemma 1.4 as ZG = {(a,b) ¢ ZH & A |
@1(a) =W1(b) for 1<i<q}l, a multiple pullback.

Now consider ZH as a pullback of Z @ Z[gz_ ], as in lemma 1.5, identi-
fying m(c) € ZH with (m(1),m(z )) e Z ® Z[;q]. Then the map ¢i:ZH —s3. T
sends m(o) to ETE;T. When i =1, a; is 1, so ¢1(m(o)) = m(1) c‘fp,
which is simply the Z-coordinate of m(c) = (m(1),m(z_)) reduced modulo p.
Thus the image of m(c) under @1 depends only upon its Z-coordinate, and we
rewrite diagram (4), when i =1, as Q1 of notation 1.6, where fl is ¢l
restricted to Z, and 97 is the map Wl. Here fl is just the map "reduce
modulo p".

When 2 < i < g, we have Ei # 1 1is a primitive qth root of unity
>> 7p defined by fi(gq) = Ei

modulo p. In this case the map fi:Z[gq]
and fi(n) =N ¢ 7p for ne Z 1is a well-defined ring homomorphism (with the
maximal ideal Pi = <cq-ai,p> as kernel). Thus the image of m(c) under ¢
depends only upon the image of m(z ) under fi’ and we rewrite diagram (4)
for 2<1<q as Q, of notation 1.6, where f. is ¢. restricted to
Z[gq], and 95 is the map Y-

It remains to show that subdiagrams QO’QI""’Qq are independent. For
Z we must show that the map n+—— (fo(n),fl(n)) € 7q ® jp for neZ is
onto, but this follows immediately from the Chinese remainder theorem, since
the kernels of fO and fl are relatively prime. Likewise the Chinese
remainder theorem implies that the map o+—— (go(a),fz(a),...,fq(a)) =
7 e 7£q-1) for o e Z[c ] is onto, since the kernels are relatively prime.

ee the note in notation 1.6.) Finally, the map X —> (gl(x),...,gq(x)) €
9) for re A s onto, since this is just the map V¥:A >> fbH of (2).0

q
{
Zp




2: MODULES OVER PULLBACKS

Now that we have represented ZG as a multiple pullback, the next step
is to relate the structure of finitely generated modules over ZG to the
structure of ZG as a pullback. This chapter establishes this translation
by defining what will be called "ZG-diagrams", providing a functor from the
category of ZG-diagrams to the category of ZG-modules, and showing that this
functor is a representation equivalence. The result will be established for
arbitrary modules and diagrams, not necessarily finitely generated, and then
we shall show that, for ZG at least, finitely generated diagrams correspond
to finitely generated modules. The results of this section are due to Levy
(unpublished).

Since the results in this chapter hold for a larger class of rings than
Jjust 2G, and since the notation is actually easier in the general case, we
introduce more general notation for this chapter. We also assume, in this

chapter only, that modules are not necessarily finitely generated.
As in definition 1.1, let R be the pullback of R1 e ... 9 Rm
determined by a finite family of independent subdiagrams

3 R >> R, << i’ R
& i(k) k 3(k)

for 1< k< n, where the coordinate rings R. are arbitrary, and we assume
R

that the connecting rings ﬁk are semisimple artinian. Set R = K
1

nes

We first prove a simple lemma about R. k

Lemma 2.1: The natural map v:R
(rl,...,rn) e R, where re = fk(ri(k)) = gk(rj(k))’ is onto. Its kernel

>> R which sends (rl,...,rm) e R to

is @ (R f\RC), where RN R, denotes those (r
rb =0 when b # c.

1,...,rm) € R such that

Proof: That v 1is onto follows immediately from the fact that the sub-
diagrams Ql""’Qn defining R are independent. Since R f}RC = ker(v),
it follows that ? (RN Rc)sz ker(v). Conversely, if (rl,...,rm) e ker(v),
then for each c, r. maps to 0 ¢ Rk in each subdiagram Qk in which Rc
occurs, so that (O,...,O,rc,O,...,O) £ R. Thus ker(v)< g (RN RC).U
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Definition 2.2: Let S_ be a Teft R_-module for 1 <c <m. An R-diagram
D constructed from the coordinate modules Sl""’sm is defined to be a

collection of commuting subdiagrams

for 1 < k < n, such that
(i) s Bs Yy and Gk are R-homomorphisms, which is to say that
o and Y are Ri(k)-homomorphisms, and Bk and dk are
Rj(k)-homomorphisms;
(i1) Y and 6, are onto, and o and B, are one-to-one;
(ii1) §k and Kk are ﬁk-modu]es; and
(iv) im(uk)s; ker(yk) = (ker(fk))Si(k) and im(Bk)SE ker(ék)
(ker(gk))Sj(k), where fk and g, are from the subdiagram 2
in the definition of R.
Since the subdiagrams Ql,...,Q
the subdiagrams

, are independent, it follows easily that

for 1 <k <n, formed from Dk by ignoring the bottom half of the sub-

diagram, are independent (in the sense of definition 1.1). We let S(D)

denote the pullback of S1 ® ... & Sm defined by these independent sub-
I

diagrams Di,...,Dn, that is, S(D) = {(sl,...,sm) €S, 0... 05 |
Yk(si(k)) = ék(sj(k)) for 1 <k < n}.

Since the maps Yi and ék are R-homomorphisms for each k, it follows
that S(D) is in fact an R-module. It is not the case, however, that every
R-module can be represented in the form S(D) for suitable D. We shall use
the modules K, and the maps

k

o and Bk to remedy this deficiency. First
we require a few lemmas.

Lemma 2.3: Let D be an R-diagram. If we identify Rk with its image in
; Sj(k) under the map A > (uk(x),Bk(A)) for X e then

< (RNR,; " o . ; .
kS ROR (1)IS5(k) & RNOR ())55(k)

k’
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Proof: By independence of the subdiagrams Ql""’Qn defining R, given k
we can find ey € Ri(k) such that fk(ek) =1c¢ Rk and e, maps to 0 in

all other R to which R.( maps. It follows that

k' i(k)

(1) ek(ker(fk)) =RN Ri(k)’

that is, every element of ek(ker(fk)) can occur as coordinate i(k) of an
element of R whose other coordinates are all zero. On the other hand, since
KL is an ﬁk-modu1e and fk(ek) =1le ﬁk, multiplication by e is the
identity map on Kk. Thus using (1) we get "k(Kk) = (ekKk) ey )CZ
ek(ker(fk)) (k)" (RAR; ik )) i(k)* A similar argument shows that (K <

ROV R5 49500

(K

kK

Lemma 2.4: Let D be an R-diagram. If we identify Kk with its image in
. . . X <
S1(k) ® Sg(k) then in fact K S(D).

Proof: We show the stronger statement
X < . . .
(2) Kk S (RN R1(k))S(D) o (RN RJ(k))S(D)

(Here we identify R NR. with {(r ris- ..,rm e R | r,=0 for b#clSR.)
By independence of the subdiagrams 1,.. ,D defining S(D), each projec-
tion map S(D) >> S is onto. Hence (R N R, )S(p) = (R F]RC)SC, )

(

lemma 2.3 implies kQC_(RF]R())() RﬂR())WLD

Now that we know that KkSE S(D) for each 1 < k < n, we make the
following definition.

Definition 2.5: Let D be an R-diagram built from coordinate modules
Sl""’sm’ and let K(D) = ﬁ Kk, computed inside S(P). (Ry lemma 2.4 this
makes sense.) Note that K(D) is an R-module since the maps oy and ?k
are R-homomorphisms. We define

M(D) = S(D)/K(D),
so that M(D) 1is also an R-module.

We shall show that the construction of M(D) is general enough so that
any R-module can be represented as M(D) for suitable D, First we make the

collection of R-diagrams into a category.

Definition 2.6: Let R be fixed as above, and let D and D be R-diagrams
built from coordinate modules Sl’ ..,Sm and Sl’ ..,Sm, respectively. A
morphism 6:D

> D will be a collection of R-module homomorphisms
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8 38 > gc’ §k:§k > §k and ék:Kk > Kk’ where 1 <c<m and

7 (o
1 <k <n, such that for each k, the three-dimensional diagram consisting of

Oi(k)’ ej(k)’ ek, and ék together with the subdiagrams Dk and 5k com-
mutes. It is routine to verify that the class of R-diagrams with morphisms so
defined forms a category.

We define the direct sum D o D of R-diagrams by taking the direct sum
of modules and maps in each. Note that this agrees with the definition of
direct sum in the category of R-diagrams. We say that D is indecomposable
if and only if it is indecomposable in the category of diagrams. That is, D
is indecomposable if and only if D # 0 (that is, Sc # 0 for some c¢) and

whenever D = Dl ® DZ’ either D1 =0 or D2 = 0.

carries K(D) to K(D ), so that
> M(D ). It is
easy to check that M( ) 1is an additive functor from the category of R-

Note that any morphism 6:
6 canonically induces an R-module homomorphism M(6):M(D)

diagrams to the category of R-modules. In the remainder of this chapter we
show that M( ) s actually a representation equivalence. First we need to
establish a few facts about diagrams.

Lemma 2.7: Let S = S(D). Then Sf\Sc = (R(WRC)S for 1 <c<m.

Proof: Fix c¢, let Fk = ker(fk) and Gk = ker(gk), and let Ih =

(N FINn(MN G ) the intersections taken over all f, which map R
kth K kgh k c
to Rk and over all 9y which map RC to R except for k = h. By inde-

k’
pendence of the subdiagrams Ql,...,Qn we get

3 R= I,
(3) ;h

the sum taken over all h such that RC maps to Eh in Qh. (This follows

easily from the fact that Fh + Ih = RC or Gh ¥ Ih = RC for each h,

depending on whether fh or g, maps RC to ﬁh.) It is also clear that

(4) RAR. = (N F) NN 6),
¢ k k
the intersections taken over all fk which map Rc to ﬁk and over all 9y
which map RC to ﬁk’ respectively. Hence since S is a pullback, we get
sNS_ = (N ker(y,) ﬂker
C K k
= (ﬁ? k c fw GkSC (by definition of D)
= (] LI ﬂ FS) NN 651 (by (3))
k k



