DATA STRUCTURES

FROM ARRAYS TO PRIORITY QUEUES
WAYNE AMSBURY

Data Structures

From Arrays to Priority Queues

Wayne Amsbury

Northwest Missouri State University

Wadsworth Publishing Company
Belmont, California
A Division of Wadsworth, Inc.

Computer Science Editor: Frank Ruggirello
Production: Mary Forkner, Publication Alternatives
Text Designer: Michael Rogondino

Copy Editor: Joan Pendleton

Technical Illustrator: Carol Johnston

Cover Design: Stephen Osborn

Signing Representative: Myron Flemming

© 1985 by Wadsworth, Inc. All rights reserved. No part of this book may be
reproduced, stored in a retrieval system, or transcribed, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without the prior written
permission of the publisher, Wadsworth Publishing Company, Belmont, California
94002, a division of Wadsworth, Inc.

Printed in the United States of America
123456789 10—89 88 87 86 85
ISBN D0-534-04590-1

Library of Congress Cataloging in Publication Data

Amsbury, Wayne, 1935-
Data structures.

Bibliography: p.

Includes index.

1. Data structures (Computer science) 1. Title.
QA76.9.D35A47 1985 001.64'4 85-3159
ISBN 0-534-04590-1

Data Structures

From Arrays to Priority Queues

Wadsworth Series in Computer Information Systems

Senn, Information Systems in Management, Second Edition

Clarke and Prins, Contemporary Systems Analysis and Design
Vasta, Understanding Data Base Management Systems

Ageloff and Mojena, Applied Structured BASIC

Rob, Big Blue BASIC: Programming the IBM PC and Compatibles
Athappilly, Programming and Problem Solving in VAX-11 BASIC
Rob, Introduction to Microcomputer Programming

Amsbury, Data Structures: From Arrays to Priority Queues

Brown, From Pascal to C: An Introduction to the C Programming Language

Preface

Many application programs and discussions of topics in computer science are awk-
ward without a relatively extensive acquaintance with data structures. Hence, the
data structures course is moving rapidly downward in the curriculum. In the last
few years it has changed from being a graduate-level course in analytical tech-
niques to a foundation course for undergraduates and nonmajors. If it isn’t already,
data structures soon will be taught at four-year colleges as a prerequisite for most
upper-level computer science courses and as a terminal computer science course in
two-year programs and for many nonmajors. Consequently, the course is taught on
a wide range of levels. The broadening of the audience requires some adjustment
in the way a data structures course is taught.

Although its wide range of content and academic rigor make it suitable for use
in higher-level courses, Data Structures: From Arrays to Priority Queues is in-
tended to serve a broader audience. The book can function as an introduction to
data structures quite early in the development of programming mastery. It is aimed
at the student who has had one or more semesters of programming in a structured
language and no specific college mathematics. At lower levels, a data structures
course needs to develop algorithmic sophistication rather than exercise mathemati-
cal skills. Thus, this book keeps the comparison of data structures and algorithms
in constant view, but it does not require a great deal of mathematical sophistica-
tion. Data Structures brings the reader to an awareness of the timing of algorithms,
particularly at the level of the order of growth, but extensive analysis of algorithms
applied to data structures is left to later courses. The intent is to foster an apprecia-
tion of the effectiveness of data structures and their associated algorithms, but in an
introduction it is more important to construct a workable set of tools than to hone
a smaller set. Data structures themselves are the primary focus, not their detailed
analysis.

The topic of data structures plays much the same essential role in computer
science that calculus plays in mathematics. The apparent agenda in a data struc-

Xiii

Xiv

Preface

tures course is the comparative study of alternate ways to solve and implement
program solutions to problems. The hidden agenda is the development of an
understanding of the use of abstraction in problem solving. This book focuses on
the hidden agenda as a foundation for study of the apparent agenda. Skill in ab-
straction is developed gradually, as a natural part of problem solving with pro-
grams. Three features that explicitly address the hidden agenda are:

Use of Pascal-like pseudocode
Comparison of algorithmic and implementation variations

Generalized algorithms for data structure traverses

A form of pseudocode is used to present algorithms for several reasons. One
reason is simply that no one language is ideal for all purposes, is used universally,
or is dominant forever. A number of languages, including Algol, Pascal, ADA,
and Modula-2, have common features extracted here. Another reason for present-
ing algorithms in pseudocode for the reader to translate into a working language is
that the task requires some effort, but not too much. Translation requires a choice
of parameter-passing classes for procedure variables and attention to some other
details. Translating pseudocode does not, however, require the time and effort
needed to derive an algorithm. An extensive amount of conceptual material can be
presented succinctly in pseudocode. Use of pseudocode thus provides an appropri-
ate balance between covering the maximum amount of ground and providing in-
depth understanding of the details of the geography that is traversed. Use of
pseudocode, plus examples in the text, also helps readers to develop skill in ab-
straction and understanding of shell-structuring and modularity.

The management of data structures involves pitfalls that lead to subtle bugs in
programs, and such potential problems are best exposed by being viewed from
several perspectives. Therefore, Data Structures emphasizes the variety of solu-
tions to problems. For example, general traverse algorithms are developed for lists,
binary trees, and priority queues. Such general algorithms provide a framework
within which variations can be created and problems can be solved. The algorithms
can be tailored to specific applications, and the exercise of doing so has merit in
itself. The general algorithms are better guides to the variations needed for appli-
cations than is one specific variation that often fails to fit. General algorithms also
promote the development of skill in abstraction in a relatively gentle way.

A separate collection of expansion and enrichment sections is included in Part
II. The sections introduce or explore in depth topics that are related to the main-
stream of the text. Some of these sections contain substantial working Pascal pro-
grams, initially developed in pseudocode, which provide examples of program
development. The instructor thus has options for major examples, enrichment, and
independent reading assignments, yet because the additional sections are separate,
they do not distract from the main content.

To help the instructor tailor the course to students with varied backgrounds,
most topics in the book can be covered at a variety of levels: :

Preface XV

Pictorial discussion and general comprehension

Tracing of the crucial process(es) acting on a specific example

Pseudocode detailing of an algorithm with discussion of problems and variations
Program assignments based on class discussion

Program assignments based on reading

U

Experimentation with programs and analysis of the results

Potential assignments are separated into exercises, problems, programs, and
projects, and the amount of effort required increases in that order. Possible assign-
ments are mentioned in the text where they are appropriate, but they are grouped
together at the end of the chapter so they can be found easily at any time. Summa-
ries offer the reader an overview of material in each chapter.

The instructor’s manual includes answers to the exercises and problems and a
Pascal solution to a program assignment from each chapter.

The flexibility designed into this text has allowed it to be used at NWMSU. for
classes with students of mixed backgrounds, many of whom are second-semester
freshmen. The central thrust of the course is coverage of the sections in Part One
of this text that are not marked optional. In that course, Chapter 7 is considered
remedial but is available for self-study, the timing-function portion of Chapter 1 is
the only part of that chapter requiring class time, and Chapter 10 is seldom
reached. Some optional sections in Part I and various sections of Part II are select-
ed by instructors for supplementary readings, assignments, and sometimes class
discussion.

Thorough coverage of the entire text requires a second semester or a very fast
pace for even well-prepared students. The intent of the rich offering of Part II and
the optional sections in Part I is to support flexibility through the selection of
sections and levels of coverage. (Besides, students will explore accessible material
on their own.)

The reviewers listed below made many suggestions that were incorporated
into this book and improved it immeasurably. They are not, however, responsible
for the remaining errors, whether inadvertant or stubborn: Cathy Dickerson, Black
Hawk College; William H. Ford, University of the Pacific; Ken Friedenbach,
University of Santa Clara; Judith L. Gersting, Indiana University-Purdue Univer-
sity; Henry Gordon, Kutztown State College; Nancy Griffeth, Georgia Institute of
Technology; Greg Jones, Providence, Utah; Leonard Larsen, University of Wis-
consin, Eau Claire; Louise Moyer, California State University, Hayward; Ron
Peterson, Weber State College; Douglas Re, San Francisco Community College;
Dean Sanders, Illinois State University.

Two groups of people aided and abetted this work in ways that must remain
untold in detail but are appreciated in depth. One group is a team assembled by
Wadsworth that includes: Myron Flemming, Frank Ruggirello, Serina Beaupar-
lant, Mary Forkner, and Joan Pendleton. The other group consists of colleagues at

xvi

Preface

NWMSU: Merry McDonald, Gary McDonald, Robert Franks, Hong-Shi Yuan,
Phil Heeler, and Margaret Adams.

My brother, David, put considerable effort into improving my technical writ-
ing in the early stages of this book, and I can only hope that the effect carried
through the project.

Finally, this book could not have been produced if my wife, Carlene, had not
taken over virtually all of the management of a busy household while working full
time.

Wayne Amsbury

Preface

PART |

CHAPTER 1

CHAPTER 2

Contents
xiii
The Mainstream 1
Algorithms and Timing Analysis 3
1.1 Sophistication in Programming 4
1.2 The Pseudocode Language SUE 6
1.3 The Timing of Algorithms 13
1.4 Comparison of Three Sorts (Optional) 20
1.5 Random Processes (Optional) 29
SUMMARY 29
EXERCISES and PROBLEMS 30
The Array Structure 32
2.1 Static Cell Groups (Optional) 32
2.2 The Array as a Structure 36
2.3 Array Addresses 39
2.4 A Sparse and Static Table 43
2.5 Hash Tables (Optional) 48
2.6 Unfolding Indices (Optional) 49
SUMMARY 52
FURTHER READING 53
EXERCISES, PROBLEMS, PROGRAMS, and
PROJECTS 53

Vi

Contents

CHAPTER 3

CHAPTER 4

CHAPTER 5

List Processing

3.1 The List as a Structure

3.2 Linked Lists

3.3 Common List Operations

3.4 The Upper Crust at Ballyhoo U (Optional)

3.5 Array Support for Linked Lists

3.6 Ordered Lists

3.7 Circular Lists

3.8 Polynomial Arithmetic (Optional)

3.9 Arithmetic of Unbounded Precision (Optional)
SUMMARY

EXERCISES, PROBLEMS, PROGRAMS, and
PROJECTS

Stacks

4.1 The Stack Structure

4.2 Stacks in Language

4.3 Stacks in the Language FORTH (Optional)
4.4 The p-Machine (Optional)

4.5 The Use of Stacks in Simulations (Optional)
4.6 Backtracking with Stacks (Optional)
SUMMARY

EXERCISES, PROBLEMS, PROGRAMS, and
PROJECTS

Queues

5.1 Queueing Behavior

5.2 Queue Implementation and Management
5.3 Circular-Track Queues

5.4 Generalized Queues

5.5 Queues in Hardware (Optional)

5.6 On the Simulation of a Doctor’s Waiting
Room (Optional)

SUMMARY

EXERCISES, PROBLEMS, PROGRAMS, and
PROJECTS

57

58
60
62
76
79
83
89
90
92
93

94

97

98
106
115
116
116
117
118

118

120

122
123
129
131
132

133
138

139

Contents Vi
CHAPTER 6 General Lists: Multiple Access Paths 142
6.1 Doubly Linked Lists 143
6.2 n-braids 146
6.3 Matrices and Graph Adjacency 149
® 6.4 Sparse Matrix Representation (Optional) 154
6.5 The Orthogonal List (Optional) 155
6.6 A Dynamic Storage Allocation
Model (Optional) 159
SUMMARY 166
EXERCISES, PROBLEMS, PROGRAMS, and
PROJECTS 167
CHAPTER 7 Recursion 169
7.1 A Recursion Sampler 169
7.2 The Fibonacci Connection 174
7.3 Search in an Ordered List 181
® 7.4 The Towers of Hanoi (Optional) 185
® 7.5 QuickSort (Optional) 185
B 7.6 The Eight-Queens Problem (Optional) 186
® 7.7 A General-List Visitation Algorithm (Optional) 190
® 7.8 LISP: Lists and Recursion (Optional) 192
SUMMARY 196
EXERCISES, PROBLEMS, PROGRAMS, and
PROJECTS 197
CHAPTER 8 Binary Trees 199
8.1 General Features of Binary Trees 202
8.2 Implementation of Binary Trees 207
8.3 Recursive Binary Tree Traverses 209
8.4 Iterative Tree Walks 215
8.5 Ordered Binary Trees 220
8.6 Heaps 226
8.7 Balanced Binary Trees 235
® 8.8 Threaded Binary Trees (Optional) 24
SUMMARY 244

EXERCISES, PROBLEMS, and PROGRAMS

247

viii

Contents

CHAPTER 9

CHAPTER 10

PART II

SECTION A

SECTION B

Multiple Access Paths to Data

9.1 Access by Indirection

9.2 External Files

9.3 Doubly Linked Two-Way Trees

9.4 m-Way Search Trees

9.5 B-trees

9.6 2-3-4 Trees (Optional)

9.7 Sets and Their Trees (Optional)
9.8 Trees as Decision Tools (Optional)
9.9 Game Trees (Optional)

SUMMARY

EXERCISES, PROBLEMS, and PROGRAMS

Graph Algorithms

10.1 Graph Representation

10.2 The Priority-Queue Traverse of a Graph
10.3 Applications of Priority-Queue Traverses
10.4 Traverses of Weighted Graphs
SUMMARY

FURTHER READING

EXERCISES, PROBLEMS, and PROGRAMS

Expansions and Applications

Random Processes

A.1 Mean and Standard Deviation

A.2 Frequency Distributions

A.3 Normal Distributions

A.4 Exponential Distributions
EXERCISES, PROBLEM, PROGRAM, and

PROJECT
Hash Tables

B.1 A Choice of Hash Functions
B.2 Linear Probing

248

249
253
254
258
262
276
281
286
287
288
291

292

295
299
306
318
323
323
324

327

329

331
332
333
335

336
337

339
342

Contents iX

B.3 Secondary Clustering and Double Hashing 344

B.4 Deletion and Rehashing 346

PROBLEMS and PROGRAMS 346

SECTION C Circular List Operations 347
EXERCISES and PROBLEMS 352

SECTION D Integer Arithmetic of Unbounded Precision 353
D.1 The Entry Sequence 353

D.2 Utility Routines 354

D.3 Arithmetic Operations 358

SECTION E The Stack Machine 377
SECTION F Stacks in the Language FORTH 381
F.1 FORTH Control Structures 386

SECTION G The p-Machine 390
SECTION H Following a Maze 398
SECTION | The Queue Machine 403

SECTION J Queues in Hardware 408
PROGRAMS 412

SECTION K A Simulation of an Airport Customs Station 413
K.1 The Customs Station 414

K.2 The Event-Cycle Level of Airport 416

K.3 The Gathering of Data 418

PROJECTS 419

K.4 The Program Airport 420

SECTION L Chaining in Scatter Storage 431

PROBLEM and PROGRAM 434

X

Contents

SECTION M

SECTION N

SECTION O

SECTION P

SECTION Q

SECTION R

SECTION S

SECTION T

SECTION U

SECTION V

Walking a General List
PROJECTS

The Main Diagonal Circulation Sparse Matrix

A QuickSort Program

0.1 The QuickSort Demonstration Program
A Balanced Static BST

PROBLEM and PROGRAM

Huffman Code Trees

Q.1 Building a Huffman Tree

EXERCISES, PROBLEM, PROGRAM, and
PROJECT

AVL Trees

R.1 The Insertion Algorithm for AVL Trees
EXERCISES, PROBLEM, and PROJECT

File Merging and MergeSort

S.1 A Linked-List Merge
S.2 Binary Merge

S.3 Merge Sorting
PROGRAMS

Priority Queue Extension of Merge Runs
PROGRAM

Red-Black Trees

PROBLEM and PROGRAM

The Eight Coins Problem

PROGRAM

435

442

443

449
452
456
459
460
463
466
467

472
475

476

476
479
480
482

483
485
486
498
499

502

Contents

Xi

SECTION W Node Evaluation and Pruning of Game Trees

REFERENCES

INDEX

W-1 Alpha-Beta Pruning of a Game Tree

EXERCISE, PROBLEMS, PROGRAM, and
PROJECT

503

506

509

511

513

PART ONE

The Mainstream

