Lecture Notes In
Mathematics

Edited by A. Dold and B. Eckmann

Subseries: Instituto de Matematica Pura e Aplicada, Rio de Janeiro
Adviser:  C. Camacho

1207

Pierre H. Bérard

Spectral Geometry:

Direct and Inverse Problems
With an Appendix by G. Besson

SpringerVerlag

Berlin Heidelberg New York London Paris Tokyo



Author

Pierre H. Bérard
Département de Mathématiques, Université de Savoie
B.P. 1104, 73011 Chambéry Cedex, France

This book is being published in a parallel edition by the Instituto de Matematica Pura
e Aplicada, Rio de Janeiro as volume 41 of the series ,Monografias de Matematica“.

Mathematics Subject Classification (1980): Primary: 568G 25, 35P 15, 52A 40
Secondary: 58G 11, 58C 40, 58G 30

ISBN 3-540-16788-9 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-16788-9 Springer-Verlag New York Berlin Heidelberg

Library of Congress Cataloging-in-Publication Data. Bérard, Pierre H. Spectral geometry. (Lecture
notes in mathematics; 1207) Bibliography: p. Includes index. 1. Geometry, Riemannian.

2. Eigenvalues. 3. Operator theory. . Title. |l. Series: Lecture notes in mathematics (Springer-
Verlag); 1207.

QA3.L28 no. 1207 [QA649] 510 s [616.3'73] 86-20323

ISBN 0-387-16788-9 (U.S.)

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting,
reproduction by photocopying machine or similar means, and storage in data banks. Under

§ 54 of the German Copyright Law where copies are made for other than private use, a fee is
payable to “Verwertungsgesellschaft Wort", Munich.

© Springer-Verlag Berlin Heidelberg 1986
Printed in Germany

Printing and binding: Druckhaus Beltz, Hemsbach/Bergstr.
2146/3140-543210



To Rachel, Philippe, Izabel



INTRODUCTION

The purpose of these notes is to describe some aspects of

direct problems in spectral geometry.

Eigenvalue problems were motivated by questions in mathematical
physics. In these notes, we deal with eigenvalue problems for the
Laplace=Beltrami operator on a compact Riemannian manifold. To such
a manifold (M,g), we can associate a seguence of non=-negative real

}1=1’
A8  acting on C”(M). One can think of a Riemannian manifold as a

numbers {A the eigenvalues of the Laplace-Beltrami operator

i
musical instrument together with the musician who plays it. In this
picture, the eigenvalues of the Laplace operator correspond to the
harmonics of the instrument; they may depend on the music player,
i.e. on the Riemannian metric: think of a kettledrum, or better of

" . 4
a Brazilian "cuica'".

Spectral geometry aims at describing the relationships
between the musical instrument and the sounds it is capable of

\

sending out.

The problems which arise in speétral geometry are of two
kinds: direct problems and inverse problems. In a direct problem,
we want information on the sounds produced by the instrument, in
terms of its geometry. For example, we know that the bigger the
tension of the parchment head of a kettledrum, the higher the pitch.
In an inverse problem, we investigate what geometric information on

the instrument can be recovered from the sounds it sends out.

Both types of problems are relevant to deep questions arising
in mathematical physics (for example in elasticity theory, in plasma

physics, in spectroscopy...).



This book could be divided into three parts: Chapters I to
IIT; Chapters IV to VI and Appendix A; Chapter VII and Appendices B

and C.

In Chapter I, we give some very simple-minded motivations
from mathematical physics. Our purpose is not to derive mathematical
models for some physical phenomena, but rather to show how some
mathematical objects which will be introduced later on, arise
naturally from physical principles. For further reading, we suggest

[c-H] ana [TL].

Chapter II is devoted to Riemannian geometry. We introduce
the basic notions (geodesics, curvature,...) and we state, mainly
without proofs, the basic results. 1In order to understand Chapter
VI, the reader must have in mind the comparison theorems which
involve the curvature of a Riemannian manifold. For further reading,

we suggest [B-c], [col, [c-E], [M-S] and [s1].

In Chapter III, we introduce the Laplace-Beltrami operator,
and we describe the eigenvalue problems we will deal with in this
book. An important part of this chapter is devoted to the variational
characterizations of the eigenvalues. This is very important for
later purposes. Although this material can be considered as classieal
([xol, [R-S] or [C-H]), we have tried to describe it at length.

The last paragraph of Chapter III contains general considerations on
direct and inverse problems, and some answers to such problems as an

illustration of the variational characterizations of the eigenvalues.

Chapters IV to VI form the core of this book. They contain

results related to isoperimetric inequalities and to an important
topic in Riemannian geometry, namely the interactions between local

geometry (curvature estimates) and global geometry (topology...).

\



Many of the results we present in these chapters are new and are not
yet available in print. These results were obtained in collaboration

with G. Besson and S. Gallot (see [B-B-Gl to 3], [B-Gl).

In Chapter IV, we introduce isoperimetric methods on compact
Riemannian manifolds without boundary. The general setup described
in § B, as well as the proof of J. Cheeger's lower bound for the
first non-zero eigenvalue of a closed Riemannian manifold, are new.
They arose from the above mentioned papers, and from brainstorming

sessions with G. Besson and S. Gallot.

In Chapter V, we introduce the heat equation and then go
directly to the main tool in this book: the isoperimetric inequality
for the heat kernel. The ideas we develop here are those of [B-G];
our presentation differs however from that of [B-G] and is more in

the spirit of Chapter IV,

Chapter VI is devoted to some applications of isoperimetric
inequalities to Riemannian geometry. We use the ideas of [B-G], and
the isoperimetric inequality obtained in EB—B-GI], to give bounds on
topological invariants. The underlying method is the analytic method
introduced by S. Bochner in the early 1940's, to obtain vanishing
theorems. This method was improved by P. Li (1980) to give estimating
theorems for Betti numbers, and later by S. Gallot (1981) to give
estimating theorems in a more general framework. Both used
isoperimetric estimates for Sobolev constants. In Chapter VI, we
introduce a new idea (that of using Kato's inequality on heat kernels)
which is due to M. Gromov, and came to life with the isoperimetric
inequalities on the heat kernel given in [B-G]. It is important to
read this chapter keeping in mind the compactness theorems of M.
Gromov. These theorems are briefly described in the last paragraph

of Chapter VI (see [SI] for a review).
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These chapters are completed by an Appendix written by G.

Besson.

In Appendix A, G. Besson shows how one can think of
symmetrization procedures as relationships between Riemannian
Geometry/Spectral Geometry on the one hand, and Operator Theory in a
Hilbert space on the other hand; he views Kato's inequality (Chapter
VI), and the symmetrization a la Faber-Krahn (Chapters IV and V), as
particular cases of a unique general theorem. This interpretation is
important because it distinguishes geometric techniques (isoperimetric
inequalities) from analytic techniques (quadratic forms and operator

theory); it also separates technicalities from fundamental ideas.

I am very grateful to G. Besson for writing this Appendix.

Spectral geometry has witnessed much research activity since
the late 1960's. In Chapter VII, we very briefly sketch some of the
important recent developments (in particular, see the very end of

Chapter VII for more references).

Appendix B is a bibliography which I compiled in collaboration
with M. Berger. I would like to thank M. Berger for allowing me to
include it here. This bibliography is reproduced from the printed
original; I thank the publisher Kaigai Publications (Japan) who left
us the copyright. This bibliography is referred to as [B-B] in the
text. It is divided into several chapters dealing with the different
aspects of spectral geometry. Although the title refers to 1982, we
revised the bibliography in September 1983. In Appendix C, I have

added some new references.

This book was originally written both as a support for, and
as a complement to lectures delivered at the 15°¢ Coléquio Brasileiro
de Matemética, July 1985. Although I have tried to give many

complete proofs, I deliberately put emphasis on ideas rather than on

Vil



technicalities. 1In a sense this book is an invitation to spectral
geometry, rather than a course on spectral geometry. The original
notes were first published by IMPA, in the series "Coldquio Brasilei-
ro de Matematica". This new edition differs very little from the
original one, as far as the mathematics are concerned: in order to
avoid delay, I have only corrected some mistakes in the original
text. 1In an attempt to make these notes more useful, I have added

Appendix C (as a complement to [B-B]) and two indexes.

I thank the organizing Committee of the 152 Coldquio Brasilei
ro de Matematica for the opportunity to give a course on spectral

geometry, and IMPA for its hospitality.

It is a pleasure for me to thank M.F. Cordel and P.
Strazzanti who typed the first version of these notes, as well as
Rogério Dias Trindade who typed the present text, for their care and

compe tence.

I profited very much from regular brainstorming sessions with
G. Besson and S. Gallot over the last three years. This book is an

outgrowth of our collaboration. I owe them very much.

This book is dedicated to Marcel Berger in acknowledgement

of his teachings.

Rio de Janeiro, April 1986.
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CHAPTER I

MOTIVATIONS AND THE PHYSICAL POINT OF VIEW

1. The purpose of this chapter is to introduce some basic
concepts which arise naturally from problems in mathematical physies.
Our presentation might appear childish...; we do not aim at
establishing good mathematical models for some elasticity}problems.
We only want to show how the notions of energy 1nteg;éi:yegriational
methodsilpqpndary conditions, wave equation, separation of variables,
eigenvaf%g:%roblems... arise naturally from problems in mathemafical

physics, and how they are related to other fields in mathematics

(partial differential equations, spectral theory, Riemannian geometry).

A. AN ELEMENTARY EXAMPLE

2. Let us consider a homogeneous elastic string S whose

position at rest is represented by the line segment EO,L] in the
plane. The string being elastic, the tension forces are tangential
to the string. The string being homogeneous, the linear density p

and the tension u of the string are constant along the string.

The first problem we shall deal with is that of the

equilibrium position of the string S submitted to an external force

which acts in the plane, transversally to the string, with intensity

f(x).

We represent the equilibrium position of the string by a

function wu: [0,L] - R, the amplitude of the deflection of the



string, therefore assuming that the points of the string can only

move transversally.

The potential energy of the string consists of two terms:
the energy Et(u) which arises from the tension u, and the extemal
energy Ee(u) which arises from the force applied to the string.
The energy Et equals the tension times the increase of length of

the string; the external energy is the work of the force f. We have

L
E (u) = ul J (1+(u;)2)1/2dx - L];
0
(3)

Il

L
Ee(u) _[ f(x)u(x)dx.
0
We shall now make the assumption that the deflection of the
string is "very small" in the sense that we can replace (1+(u)'()2)1/2
by %(u;)Q. The potential energy of the string can then be replaced

by

L L
(4) E(u) = % j\(u;)zdx + J! f(x)u(x)dx.
0 0

In order to find u, we apply the principle of least

potential energy which says that a stable equilibrium u is a loecal

minimum of the energy E, which implies that

d
(5) —E(u+ev) -0
de c=0 !

where u + ev represents a position of the string close to the

equilibrium u.

If we plug condition (5) into (4), we find

L L
(6) o ‘[ u;v;dx + ‘[ f(x)v(x)dx = O.
0 0



We can of course take local variations v, 1i.e. variations
with compact support in J]0,L[L. Taking such a variation and

integrating by parts, we find that for all v in C:(]O,L[),

L
.[ [-uu;x + f(x)I]v(x)dx = 0 and hence
0

2

(7 udde) = £(x) in Jo,if.
dx
8, Remark. We have implicitely made the assumption that u is

twice differentiable, in order to be able to write (7). We shall

show how one can make weaker assumptions later on (n? 43).

9. Let us now take the function v in Cm(fO,LT). Equation (6)

becomes, after integration by parts,

L
+r 1L ” _
wu vl + j (f(x)-uu ) v(x)dax = 0.
0

Taking (7) into account, we then have

(10) u;(L)v(L) - u;(O)v(O) = 0.

The fact that one can take one v or another depends on the
physical problem at hand. If we do not impose any condition on v,

we deduce from (10) that u must satisfy the natural boundary

condition (Neumann boundary condition)
(10N) u (0) = 0 and wug (L) = 0.

If we assume that the string is fixed at both ends (think of
a violin or a piano string), we must impose that the deflection of
the string is 0 at x = 0 and x = L. This means that both u
and v must satisfy the boundary condition (Dirichlet boundary

condition)



(10D) u(0) = 0 and u(L) = 0.

In that case, (10) is void. The boundary condition (10N)
corresponds to a free string, for which all deflections are allowed
or admissible. The boundary condition (10D) corresponds to a string

which is fixed at both ends. We then impose that the deflections

satisfy u(0) = 0 and u(L) = 0. It is physically very intuitive
that such conditions must be imposed to determine the equilibrium

position of the problem under consideration.

11. Summary. In order to determine the equilibrium of a string

submitted to a transversal external force f, we can

(i) either seek the local extrema of the energy

L L
E(u) = 5 f (u}'{)zdx ¥ { £(x)u(x)dx,
0 0

when u varies in a space of admissible functions, corresponding to

the physical problem under consideration;
(ii) or solve the equation
u —5(x) = f(x) in Jo,L[,

where some boundary conditions are imposed to u at x = 0 and

x = L, depending on the problem which is considered.

Examples:
Dirichlet problem (string fixed at both ends):

. Admissible functions: u € C2([O,L]) (see n? 8) such that

u(0) = u(L) = 0 (u+tev must also be admissible),

. Boundary conditions: wu(0) = 0 and u(L) = 0;



Neumann problem (free string)

. Admissible functions: u € C2([0,L]) (see n® 8),

. Boundary conditions: u’(0) = 0 and u’(L) =

(imposed by the least potential energy principle).

12. Let us now consider the problem of the vibrating string, i.e.

let us determine the laws of motion of an elastic string. We denote
by u: RX [0,L] » R the deflection of the string which is assumed
to be transverse and small (in the sense used to derive (4)). The
function f considered above may also depend on the time parameter

t. We then have to consider the kinetic energy of the string, namely

L
1 112
(13) E (u) = f §-P(ut) (t,x)dx,
0
Let tl and t2 be two instants of time. Hamilton's

principle states that the motion wu(t,x) of the string between the

instants of time t and t2 should minimize the expression

J(u) = Jr Jﬁ { c( ,x))2- % u(%ﬁ)z(t,x)-f(t,x)u(t,x)}dtdx,

among all admissible motions close to u, taking the same values as

u at t = tl’ and t = t2 i.e.
(14) 5%J(u+ev) =0,
e=0

for all admissible functions v such that v(tl,x) = 0 and

v(ty,x) = 0, for all x in fo,L].

The adjective admissible refers to functions describing the
physical problem under consideration as above (see n? 9 to 11).
Applying Hamilton's principle with v € c“(]{x Lo,L])

satisfying v(ty1,x) = 0, v(tg,x) = 0, for all x, and integrating by



parts, we deduce from (14) that

t L
2
bzu bzu
{p ——g(t,x)- V) ——E(t,x)+f(t,x)} v(t,x)dt dx
k 0 dt dx

1
tz &
+ vl %ﬁ(t,x)v(t,x)dt i = 0.
0
t1
The choice of v being arbitrary we conclude that
bzu bzu
(15) —5(t,x) - u —5(t,x) + £(t,x) = 0 in RX Jo,Ll,
dt dx
du L
(16) S;(t,x)v(t,x)l = 0 for all admissible v, and all t.
0

In the case of a string with free ends (i.e. no condition on

u and v), Equation (16) gives (Neumann conditions)
du
(16N) s;(t,o) =0 and sg(t,L) =0 for all t.

In the case of a string with fixed ends, we must impose
u(t,0) = u(t,L) =0 and v(t,0) = v(t,L) = 0 for all +t. Equation
(16) is then always satisfied, and we only write the condition that

u is admissible (Dirichlet conditions)
(16D) u(t,0) = 0 and u(t,L) = 0 for all t.

Equation (15) is called the one-dimensional wave equation

(the space variable x being one-dimensional).

17. Remark. In order to be able to determine the motion u(t,x)
of the string, we need Equation (15), boundary conditions e.g. (16D)

or (16N) and initial conditions; these initial conditions already

appeared in the statement of Hamilton's principle; we also consider

the Cauchy data u(t_,x) = u (x) and u;(to,x) =y (x), 0sxsIL,



