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Preface

Les Houches

Number theory, or arithmetic, sometimes referred to as the queen of mathematics,
is often considered as the purest branch of mathematics. It also has the false repu-
tation of being without any application to other areas of knowledge. Nevertheless,
throughout their history, physical and natural sciences have experienced numerous
unexpected relationships to number theory. The book entitled Number Theory in
Science and Communication, by M.R. Schroeder (Springer Series in Information
Sciences, Vol.7, 1984) provides plenty of examples of cross-fertilization between
number theory and a large variety of scientific topics.

The most recent developments of theoretical physics have involved more and
more questions related to number theory, and in an increasingly direct way. This
new trend is especially visible in two broad families of physical problems. The
first class, dynamical systems and quasiperiodicity, includes classical and quantum
chaos, the stability of orbits in dynamical systems, K.A.M. theory, and problems
with “small denominators™, as well as the study of incommensurate structures,
aperiodic tilings, and quasicrystals. The second class, which includes the string
theory of fundamental interactions, completely integrable models, and conformally
invariant two-dimensional field theories, seems to involve modular forms and p-
adic numbers in a remarkable way.

Several theoretical physicists, having experienced this evoluiion, have found it
worthwhile to bring their individual and occasional relations with mathematicians
working in number theory into a more official and profitable framework. This
idea has met with a very positive echo from the mathematicians’ side. Thus a first
version of the scientific committee given below gathered in an informal way in
order to organise an interdisciplinary meeting on “Number Theory and Physics”.
Gur aim was twofold. Physicists were given, mostly through the prograrnme
of lectures, the opportunity to become acquainted with the basic methoc and
results of number theory that are the most used in their branch. Mathematicians
discovered in most of the seminars novel domains of the physical sciences where

methods and results related to arithmetic have been useful in recent years.
- The meeting was held at the Centre de Physique, Les Houches (Haute-Savoie,
France), March 7 — 16, 1989. Most of the 58 participants, both mathernaticians
and physicists, attended the totality of the scientific programme, in spite of the
charm of the mountainous setting, the fine weather and the neighbouring ski slopes.



Although the timetable was already rather dense, with 32 lectures and 33 seminars,
many informal, but passionate, discussions and meetings often lasted late into the
night.

The Scientific Committee that organised Number Theory and Physics was
composed of eight French scientists: J. Bellissard (Theoretical Physics, Mar-
seille), C. Godréche (Solid State Physics, CEN Saclay), C. Itzykson (Theoret-
jcal Physics, CEN Saclay), J.-M. Luck (Theoretical Physics, CEN Saclay), M.
Mendés France (Mathematics, Bordeaux), P. Moussa (Theoretical Physics, CEN
Saclay), E. Reyssat (Mathematics, Caen), and M. Waldschmidt (Mathematics, IHP,
Paris). The organisers were assisted by an International Advisory Committee, com-

. posed of M. Berry (Physics, Bristol, UK), P. Cvitanovi¢ (Physics, Copenhagen,

Denmark), M. Dekking (Mathematics, Delft, The Netherlands), and G. Turchetti
(Physics, Bologna, Italy).

The following institutions are most gratefully acknowledged for their gener-
ous specific financial support of the meeting: the Département Mathématiques et
Physique de Base of the Centre National de la Recherche Scientifique; the Insti-
tut de Recherche Fondamentale of the Commissariat 2 I’Energie Atomique; the
Direction des Recherches, Etudes et Techniques de la Délégation Générale pour
I’Armement (under contract no.88/1474); the French Ministére de 1’Education
Nationale; the French Ministére des Affaires Etrangéres; and the Commission of
the European Communities. The regretted absence of support from NATO finally
turned out to allow a more flexible organisation. i

The variety and abundance of the material presented during lectures and sem-
inars led to the decision to publish two separate volumes of proceedings. This
first volume is devoted to the proceedings of the seminars. These talks, limited
on purpose to 40 minutes, offered to most participants, both mathematicians and
physicists, the possibility of illustrating, through their own research activity, the
variety of specific physical contexts which involve number-theoretic questions in
a natural though sometimes unexpected way. The 32 contributions to this volume
have been grouped into five parts for the sake of clarity: (I) conformally. in-
variant field theories, integrability, quantum groups; (IT) quasicrystals and related
geometriéal structures; (IIT) spectral problems, automata, and substitutions; (IV)
dynamical and stochastic systems; (V) further arithmetical problems, and their
relationship to physics. . -

An extensive programme of 32 lectures gave to all participants a rather com-
plete view of the different areas of number theory that, according to us, play a role
in physics. The first intensive set of 24 lectures made physicists more familiar with
basic concepts and methods in the branches of number theory that have recently
turned out to be useful in physics. The contributors were F. Beukers, J.B. Bost,
P. Cartier, G. Christol, H. Cohen, R. Gergondey, E. Reyssat, H.M. Stark, and D.
Zagier. The subjects covered included p-adic numbers, Galois theory and number
fields, elliptic functions and modular forms. A second series of lectures displayed
some theoretical physics problems where number theory plays a prominent role,
namely the quasiperiodicity theory in dynamical systems and quasicrystals. The
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contributors were J. Bellissard, P. Cvitanovi¢, M. Duneau, A. Katz, M. Senechal
and J.C. Yoccoz. We plan to publish a written version of these lectures in a
separate volume.

Although “Number Theory and Physics” may have seemed to be both too
ambitious and too exotic a theme for a 10-day workshop, this meeting has been
quite fruitful, according to the participants, in spite of its brevity, and allows
one to expect an even richer variety of subjects of future collaborations between
mathematicians and physicists, as well as other meetings around similar themes.

Saclay and Paris ' J.-M. Luck
June 1989 P. Moussa
M. Waldschmidt
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Word of Appreciation

On behalf of those who have attended this Workshop I wish to thank Jean-Marc
Luck and the other organisers of this meeting. It is always a great pleasure for me
to revisit Les Houches. I greatly enjoy the intense concentration on the subject
which is characteristic of meetings here, combined with the opportunity to enjoy
the beautiful surroundings. I have found this to be an enormously stimulating
meeting. In this group of mathematicians and physicists from different disciplines
we have had to face the challenge of understanding other languages.and unfamiliar
sets of priorities, and we have had to translate our own enthusiasms into language
that people from other disciplines can understand. This has all been made easier
by the smooth running of the Workshop by the organisers.

David Thouless
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Z/NZ Conformal Field Theories

P. Degiovanni

LPTENS, 24 rue Lhomond, F-75005 Paris, France
Unité propre de Recherche du Centre National de la Recherche Scientifique,
associée 2 1’Ecole Normale Supérieure et a I’Université de Paris-Sud

Abstract : In this paper, we give a brief introduction to Conformal Field Theory
(CFT) following the presentation of G, Segal. We explain how to reconstruct part
of a CFT from its fusion rules. The possible choices of S matrices are indexed by
some automorphisms of the fusion algebra. We illustrate this procedure by computing
the modular properties of the possible genus-one characters when the fusion algebra is
the representation algebra of a finite group. We also classify the modular invariant
partition functions of these theories. We recover as special cases the Ag) WZW theories
and the rational gaussian model.

Introduction

It is now clear that the last few years have witnessed a dramatic convergence of interests
and methods between mathematics and theoretical physics. String theory and more
recently, Conformal Field Theory perfectly illustrate this evolution.

CFT is believed to be of basic interest both in particle physics and statistical
mechanics. According to Friedan [1], the classical states of string theory (i.e. the prop-
agation of a string in a fixed background space-time) are in one-to-one correspondence
with Conformal Field Theories in two dimensions; and any statistical system with a
second order phase transition is scale, translationally and rotationally invariant at its
critical point which is therefore described by a Conformal Field Theory.

From a mathematical point of view, the importance of CFT in two dimensions
arises from the enormous symmetry of these theories. It is so huge that the hope
of a possible classification has emerged. The main idea is to classify the states of a
CFT using representations of the symmetry algebra of the theory. This has pointed
out a connection between CFT and the representation theory of infinite dimensional
algebras among which are the Virasoro algebra and the Kac-Moody algebras and their
supersymmetric generalisations. Different formulations of a CFT led to various iden-
tities between partition functions and connected this field to number theory . More
recent works concerning the study of CFT’s on arbitrary Riemann surfaces relate CFT
to the study of Riemann surfaces and modular geometry [2][3][4][5]. As was shown
by J. Birman [6], the modular group of an’arbitrary Riemann surface is related to a
braid group and CFT’s naturally provide us with representations of the braid group,
quantum groups and integrable models and, following E.Witten [7], of knot theory and
topological field theory.

1The reader will remember the celebrated Dyson-Mac Donald identities

2 ‘ Springer Proceedings in Physics, Vol. 47 Number Theory and Physics
Editors: J.M. Luck - P. Moussa - M. Waldschmidt © Springer-Verlag Berlin, Heidelberg 1990
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This paper is an attempt to give a very brief introduction to Conformal Field
Theory for mathematicians. We do not pretend to be either exhaustive or rigorous but
rather to indicate the ideas and methods used in this field. In section 1, we review
some basic aspects of conformal field theory. We follow the presentation of Segal [8]:
a CFT associates a state of a certain Hilbert space with each Riemann surface with
boundaries. We describe how this space arises from the representation theory of the
chiral algebra. The case of Rational Conformal Field Theories (RCFT), where only
a finite number of representations appears, provides the simplest situation. In this
case, it has been possible to study modular covariance and duality in full generality
[4). We give a brief summary of these results in section 1.2. A possible method of
classification of RCFT’s has emerged from this study. Sections 2 and 3 are devoted to
a very elementary illustration of these ideas.

Here, we start from the fusion rules of the theory and try to reconstruct as much
as possible of it from these data. The unexpected relationship between the fusion rules
of a RCFT and the modular properties of genus-one characters ir(g-°) discovered
by Verlinde [9] will be our basic tool and is recalled in section 2.1. We shall use it
in section 2.2 to compute the dimensions and central charge of the theory in some
particular examples. Finally, section 3 contains the classification of the genus-one
partition functions of these theories. This work has been motivated by our attempt to
get familiar with Verlinde’s work and by a recent work of C. Itzykson on AS&) level 1
theories [10]. He formulated a conjecture on the possible modular invariants which we
prove in section 3: the modular invariant partition functions are indexed by divisors of
N when N is odd and divisors of N/2 when N is even.

1 Some concepts in Conformal Field Theory

This section is devoted to a brief introduction to Conformal Field Theory for non spe-
cialists. Our presentation is inspired by Segal [8] and relies on the operator formalism
[12] [11). The interested reader can find a very clear presentation in [13]. A more prac-
tical point of view is exposed in [14] and [15]. We also describe recent results obtained
by Moore and Seiberg in the case of rational conformal field theories.

1.1 Conformal Field Theory

We shall firstly recall what is generally meant by Quantum Field Theory (QFT). We
start with a manifold (with a certain structure on it: metric,...) M with boundary M.
On this manifold exist some fields which we shall generically denote by ¢; these are
functions on M with values in a space X (target space). We assume that we are given
a local functional S[p] of the fields called the action. Locality means that if we glue
two different manifolds M; and M; together by their common boundaries to get M,
we have Syr[p] = Sar, [©1] + Sar, [2]. The object we are interested in, is the functional

2 fl= [ Dlglexn(~Sule).

w=Jf on

A very well-known example is provided by quantum mechanics where M = [0, T] and
X = R? (the ordinary space), Sy bding the classical action for a particle moving in
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this space (with or without potential). Then, the functional integral defined above is
the probability amplitude for the particle to go from one point to another point in time
T'. The set of boundary conditions of the fields on M defines the Hilbert space Hpps
of states associated with the manifold M. We are thus able to associate with M a
state in Hapr:' |M > such that Z[M, f] =< f|M > (scalar product) where |f > is the
state associated with the boundary condition f. Note that Z[M, f] can be considered
as the wave function associated with |[M >. This assignment of a state to a (possibly
decorated) manifold really defines the field theory.

We are now ready to define a Conformal Field Theory. The precise definition has
been given by Segal [8] and here, we shall only outline his definition. A conformal
field theory is defined by#he assignment of a state to any compact connected Riemann
surface M possibly with boundary. To be precise, the state is associated with the
surface together with a metric but it is supposed to depend only on the conformal class
of the metric 2. The boundary of such a Riemann surface is a disjoint urion of n circles
and Segal assumes that Hppyr = H®" where H is the Hilbert space associated with a
circle. In the case of a surface with no boundary, the Hilbert space is simply C.

Then, we need ”sewing axioms” which express the locality of the theory. Let us
consider two Riemann surfaces with boundaries and the surface obtained by gluing
the two surfaces together along one of the boundary circles. Let |M; >€ H®": and
|M2 >€ H®"2 be the states associated with the two surfaces. We suppose for clarity
that the circles we consider are associated with the first spaces. Let ¢ be the canonical
antilinear bijection from H onto its topological dual deduced from the Hilbert space
structure. Then, we have :

M >=((¢@1®...01)|M;, >).|M; >

where the linear form acts on the first Hilbert space H in the tensor product H®"2,
The state we find clearly belongs to H®("1+72=2)_ From a surface with at least two
boundary circles, we can construct a new surface by gluing along two circles. The
associated state is obtained by the same kind of contraction process. These sewing
axioms enable us to reconstruct the state associated with any Riemann surface from
the state associated with the three holed sphere: we only have to partition the surface
into three holed spheres. The state we obtain through this process does not depend
on the particular partition of the sphere. By contraction of the state associated with a
Riemann surface with suitable states, we can compute physical correlation functions.
Inserting a given field on the surface is equivalent to cutting a little disk around the
insertion point and putting appropriate boundary conditions on the boundary circle
that we have created. Hence, any local field corresponds to an operator acting on H.

In the case of a two-dimensional conformal field theory, it is possible to show that
the Hilbert space H is a representation (in general reducible) of two copies of the
Virasoro algebra Vir. This algebra is infinite dimensional and is generated by the L,’s
for n € Z and c. The commutation relations are

[Ln,e] = 0

2Up to a normalisation factor: a Weyl transformation of the metric multiplies the state by a number
which can be computed [1] [11]. This phenomenon is called the conformal anomaly.
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The L,’s are the Laurent coefficients of the analytic component of the energy momen-
tum tensor T'(z) (the other copy arises from the antianalytic component 7(z)). The
eigenvalues of the Ly and Lg operator are called the conformal dimensions of the state.
The representations we consider are highest weight representations because Lo + Lo
represents the energy of the system and we want it to be bounded from below. The
reflexion positivity property of statistical mechanics is expressed through unitarity of

the theory: H is a Hilbert space and LI = L_,,. We shall restrict ourselves to that
case. This implies that the conformal dimensions of the states are all positive num-
bers. We impose the unicity of the vacuum: there exists a unique state of conformal
dimensions (0, 0) called the vacuum and noted |0 >. In fact, as explained in [16], with
each state | > is associated a field ¢(2) such that ¢(2)|0 >= |¢ >. The state [0 > is
therefore related to the identity operator.

1.2 Rational Conformal Field Theories

At present time, there is no way to study a general conformal field theory: the Hilbert
space H is in some sense too complicated (infinite sum of irreducible representations
of Vir ® Vir). Of course, the greater the symmetry of the theory, the easier its study
is. In some cases, there exists an extension A of the Virasoro algebra such that H is
a finite sum of irreducible representations of A ® A. This is the simplest situation
and we call it a rational conformal field theory (RCFT). We shall write the following
decomposition:

H=@PV:ioW) (1)

where V; and V; are irreducible representations of A. Just as in the case of the Virasoro
algebra, A is generated by the Laurent coefficients of holomorphic fields (among which
T(z)). All the fields in A have integer dimensions (i.e. they are holomorphic fields on
C*) 3. The states of H arise from the one punctured sphere and the action of a Laurent
coefficient of a holomorphic field can be seen as the action of a contour integral of an
operator valued differential form. In some sense, we have reduced ourselves to a finite
dimensional problem. To illustrate this point, we shall explain how to define the action
of the extended algebra in any genus and number of punctures and then, we shall sum up
the work of Moore and Seiberg which expresses duality and modular covariance through
a finite number of polynomial equations satisfied by finite dimensional matrices.

The action of A generalizes to more complicated Riemann surfaces. We consider a
Riemann surface M with n points P; and a coordinate z; defined on a disk D; containing
the point P;. We shall call it a n-punctured surface in the following. Cutting the
surface along circles of constant |z;|’s is equivalent to consider a Riemann surface with
n boundary circles. Let Q(z) be a holomorphic field of conformal dimension (A, 0) and
vi(2i)(dz:)* =" a section of the (1 — h)-th power of (1.9 M over D;. Then, we define

p@ M) =3 [ Quss o iy

where the contour integral on C; acts on the Hilbert space associated with D;. Thus,

3And A is associated with the antiholomorphic fields. -



p(Q, M, (v;);) acts on H®” %, In the case of a one-punctured sphere, we select a
particular Laurent coefficient of Q(z) in this way. In the case of a three holed sphere,
one recovers the action of A on H ® H defined by Moore and Seiberg in [4]. In the case
of the energy momentum tensor, the action of the Virasoro algebra has a geometrical
meaning: it represents the change of moduli of the Riemann surface with its punctures
and coordinates [12].

Given an irreducible representation V; of A, we can associate its conjugate repre-
sentation V; such that the chiral field associated with the highest weight state of V; has
a non-zero two-point function with the chiral field associated with the highest weight
state of V;. Moreover, if we define the genus-one character of V; by

xi(r) = try (%), g=exp(mir), 3)

a representation and its conjugate have the same character. If Vj denotes the repre-
sentation with highest weight state |0 >, V5 = V5. The matrix C,-’ = §;7 is called the
charge conjugation matrix.

Conformal blocks.

Let £ be the Riemann surface with n punctures and coordinates which we consider;
we can write the associated vector as

IZ5>= D - B8 >OE8 o >

13 sssnin
T3y T

where
IE'I: oin >€ ® ‘/"i

=10

and the same for the antiholomorphic part. These [Ef . > are called the conformal
blocks on the Riemann surface X. If we contract the vector |£ > with an element of
H®" we compute the correlation function of tlie corresponding fields on X. Therefore,
this correlation function is of the form

<@ pn >n= 3 PO (m) ) (m)

where m, m are the moduli of ¥ with its punctures. For example, in the case of the
four-point function on the sphere, these are the positions of the points on the sphere
and the functions F(%) are the conformal blocks of [16].

The action of the chiral algebra A on such a state |[Zf, ; > is defined through
contour integration of operator valued differential forms. We are thus led to certain
identities, called the Ward identities which express that if one can shrink the contour
to a point without encountering any singularity, the action of the operator on the state
we consider should be zero. The action of the L_; operator should also be associated
with translations. These conditions restrict the (|Xf . >)a vectors to belonging
to a finite dimensional vector space. Ini‘the case of the three-punctured sphere with
_representatlons i, 7, k, its dimension is noted N; 4.k The N;;’s are called the fusion

v
4Due to the conformal anomaly, there is a subtlety in the case of the encrgy momentum tensor of
the theory: T'(z)vi(z)dz is not a one-form.
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rules. Physically, they represent the number of independent couplings between the
representations i, 7, k which are consistent with the action of the chiral algebra. As
any punctured Riemann surface can be obtained by gluing three spheres together, the
fusion rules are very important data of a RCI'T.

Duality and modular covariance.

If we want to find conformal blocks associated with a Riemann surface, we have to
choose a decomposition of the surface into three holed spheres sewed together. This
determines a ¢° diagram with fixed representations on the external legs. Then, by
choosing some representations in the intermediate channels and one particular coupling
for each three holed sphere, we determine a conformal block. For a given ¢° diagram,
this gives us a basis of the space of conformal blocks associated with’the surface we
consider (axiom of duality). Changing the topology of the ¢* diagram or gluing the
different three spheres together with Dehn twists in the intermediate channels or around
the external points provides us with another basis of conformal blocks. Changing the
topology of the graph can be realized using braiding or fusing of the fields (see fig
1). The Dehn twists around the external points are just represented by phase factors
and the Dehn twists in the intermediate channels can be computed knowing how Dehn
twists are represented on the torus. The different bases of conformal blocks that we have
introduced at fixed genus and number of punctures can therefore be related by matrices
called the duality matrices which can be easily computed from the dimensions of the
fields, the central charge of the theory, the braiding and fusing matrices and the Dehn
twist matrices in genus-one. Dehn twists around non trivial loops generate the modular
group of the Riemann surface with punctures and coordinates at the punctures [6].
These generators verify certain relations and this gives some equations for the different
matrices we use (braiding matrices, Dehn twists matrices in genus-one,...). Moreover,
starting from a given ¢ graph and performing a particular sequence of braidings and
fusings can give back the same ¢* diagram. This gives also rise to particular identities
satisfied by the braiding and fusing matrices. Famous examples of these consistency
conditions are provided by the Ya.ng—Baxter equatlon and the pentagonal identity of
Moore and Selberg [4].

In fact, it is possible to prove that a ﬁmte number of polynomial equations imply
that all consistency conditions arising from the modular groups defining relations and
closed cycles in the set of ¢* diagrams with labelled external legs are verified. Hence-
forth, these equations ensure duality and modular covariance in any genus and with
any number of punctures. This completeness theorem has been proved by Moore and
Seiberg [4]. As we said before, we are reduced to a finite dimensional problem.

J k £
l I F Figure 1: The braiding (B) and fusing (F)
: | operations acting on ¢ diagrams.




