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PREFACE

This book presents a simple, concise, and reasonably comprehensive
introduction to the principles and theory of structural stability that are
the basis for structural steel design and shows how they may be used in
the solution of practical building frame design problems. It provides the
. necessary background for the transition for students of structural
engineering from fundamental theories of structural stability of members
and frames to practical design rules in AISC Specifications. It was written
for upper level undergraduate or beginning graduate students in colleges
and universities on the one hand, and those in engineering practice on
the other.

The scope of the book is indicated by its contents. The concepts and
principles of structural stability presented in Chapter 1 form the basis for
the elastic and plastic theories of stability of members and frames which
are discussed separately in Chapter 2 (Columns), Chapter 3 (Beam-
Columns), Chapter 4 (Rigid Frames), and Chapter 5 (Beams). The
energy and numerical methods of analyzing a structure for its stability
limit load are described in Chapter 6.

Each of these later chapters sets out initially to state the basic
principles of structural stability, followed by the derivation of the
necessary basic governing differential equations based on idealized
conditions. These classical solutions and their physical significance are
then examined. The chapter goes on to show how these solutions are
affected by the inelasticity of the material and imperfection of the
structural member and system associated with a real structure, using both
hand techniques and modern computer capabilities. It finally outlines
some of the popularly used techniques by which this voluminous
information may be utilized to provide design rules and calculation
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X Preface

techniques suitable for design office use. In this way, the reader not only
will obtain an understanding of the fundamental principles and theory of
structural stability from an idealized elastic, perfect system, but also to an
inelastic imperfect system that leads to the necessary links between the
code rules, design office practice, and the actual structural system in the
real world.

The continued rapid development in computer hardware and software
in recent years has made it possible for engineers and designers to predict
structural behavior quite accurately. The advancement in structural
analysis techniques coupled with the increased understanding of structu-
ral behavior has made it possible for engineers to adopt the Limit States
Design philosophy. A limit state is defined as a condition at which a
structural system or its component ceases to perform its intended
function under normal conditions (Serviceability Limit State) or failure
under severe conditions (Ultimate Limit State). The recently published
Load and Resistance Factor Design (LRFD) Specification by the
American Institute of Steel Construction (AISC) is based on the limit
states philosophy and thus represents a more rational approach to the
design of steel structures.

This book is not therefore just another book that presents
Timoshenko’s basic elastic theory (S. P. Timoshenko and J. M. Gere,
“Theory of Elastic Stability,” McGraw-Hill, 1961), or Bleich’s inelastic
buckling theory (F. Bleich, “Buckling Strength of Metal Structures,”
McGraw-Hill, 1952), or Chen’s numerical analysis (W. F. Chen and T.
Atsuta, “Theory of Beam-Columns,” two-volume, McGraw-Hill, 1976,
1977) in a new style. Instead it presents theory and principles of
structural stability in its most up-to-date form. This volume includes not
only the state-of-the-art methods in the analysis and design of columns as
individual members and as members of a structure, but also an
introduction to engineers as to how these new developments have been
implemented as the stability design criteria for members and frames in
AISC/LRFD Specification.

This book is based on a series of lectures that Professor Chen gave at
Purdue University and Lehigh University under the general heading of
“Structural Stability.” The preparation of the 1985 T. R. Higgins
Lectureship Award paper entitled “Columns with End Restraint and
Bending in Load and Resistance Factor Design” for AISC Engineering
Journal (3rd Quarter, Vol. 22, No. 3, 1985) inspired us to attempt to
create a useful textbook for the undergraduate and beginning graduate
students in structural engineering as well as practicing structural en-
gineers who are less familiar with the stability design criteria of members
and frames in the newly published LRFD Specification.

Professor Chen wishes to extend his thanks to AISC for the 1985 T. R.
Higgins Lectureship Award, when the book began to take shape, to
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Professor H. L. Michael of Purdue University for continuing support
over many years, and to the graduate students, C. Cheng, L. Duan, and
F. H. Wu, among others, for preparing the Answers to Some Selected
Problems during their course work on Structural Stability in the spring
semester of 1986 in the School of Civil Engineering at Purdue University.

W.F. Chen
December, 1986 E.M. Lui

West Lafayette, IN



NOTATION

LOAD AND MOMENT

Ly

o

SR

S

ocr

axial load
2E]
”L2 = Euler buckling load

elastic buckling load

m2EI

(KL)?

elastic buckling load considering column end conditions
failure load by the elastic—plastic analysis

plastic collapse load or limit load by the simple plastic
analysis

E
P, E' = reduced modulus load

E
P, Et = tangent modulus load

ultimate strength considering geometric imperfections and
material plasticity

AF, = yield load

amplified (design) moment

elastic buckling moment

7 , n* (EC,

Z VEI),G] V1+ W< where W =P <—(;7)
elastic buckling moment under uniform moment
C..M, = equivalent moment

xiii



M,

o3

29

™

.

Notation

moment at a section due to externally applied loads
internal resisting moment of the section
transition moment (in Plastic Design)
nominal flexural strength
ZF, = plastic moment

P
1.18Mpx[1 = <F)] <M,

y

for H-section about strong axis.

plastic moment capacity about the strong axis considering
the influence of axial load

P
1o 1 (D] <,
y
for H-section about weak axis.

plastic moment capacity about the weak axis considering the
influence of axial load

ultimate moment capacity considering geometric imperfec-
tions and material plasticity

SF, = yield moment

d
GJ d—: = St. Venant (or uniform) torsion

3
—EC,, d—); = warping restraint (or non-uniform) torsion
z

stress
stress tensor
strain
strain tensor

ENERGY AND WORK

U

U,

Uy

1
E_I;Oijgij dv = Ua+ Ub+ Usv+ Uw= —I'Vim

strain energy of a linear elastic system
1 (P2 17 du)\?

2 )y Eae=3 ], Ba(%)

2) EAY 2joEAdz iz

strain energy due to axial shortening

1 (-Mm? 1k d*v\?

2 w1 =5 | B

2h E1%72), F\gz) #

strain energy due to bending

1 f-Fs 1 (- dy\?

2), oréz=3 | 61(%)

20 GFPTR) WG] %=

strain energy due to St. Venant torsion




Notation

1 L dz,}, 2
Uw = EJ(’) ECW(&?) dz

strain energy due to warping restraint torsion

|4 = —W,, = potential energy

Wint = —U = work done by the internal resisting forces
Were = -V =work done by the external applied forces
IT = U+ V = total potential energy

GEOMETRY AND DIMENSIONS

A = cross sectional area

b = flange width

Cw = warping constant

1
= ilfhz for I section

= depth

distance between centroid of flanges

Ar? = moment of inertia

moment of inertia of one flange

uniform torsional (or St. Venant) constant

Il

Il

o~ A
I

o |
= 3 gbit? for a thin-walled open section
L = length
1
r = \/g = radius of gyration

= elastic section modulus
thickness

= displacement in the X-direction
displacement in the Y-direction
n |EC,

L vV GJ

plastic section modulus

curvature

M
\/ Mp = beam slenderness parameter

cr

S 8 ™ U
Il

SN ¥
|

>
o
Il

Pek JT? E p cter

angle of twist

Il

Y

MATERIAL PARAMETERS
E

Young’s modulus
29,000 ksi for steel



Notation

effective modulus
reduced modulus
tangent modulus

yield stress

shear modulus

= 11,200 ksi for steel

2(1+v)
Poisson’s ratio
0.3 for steel

STABILITY RELATED FACTORS

Ag
B,

Co

amplification factor

P — 6 moment amplification factor for beam-columns in
LRFD

Cn

P
- (7)

Pek
P — A moment amplification factor for beam-columns in

LRFD
1

2 (5

1
-3 ()

cr

MOCI’
M M;\?
1'75+1'05<A71>+0'3<ﬁ1> <23 in AISC Specifications

2 2
for end moment case

12

M, M, M;

3 4 +3

Mmax + Mmax Mmax
(see Table 5.2b, p. 334)

equivalent moment factor for beam-columns

0.6 — 0.4(%) =0.4 in ASD for end moment case

2

=1.0

or

= equivalent moment factor for beams

for other loading conditions

+2

M
0.6 — 0.4(#) in LRFD for end moment case
2



Notation

P
1+ P effective length factor
ek

\/E = effective length factor
P ek

load factors

resistance factor

resistance factor for flexure = 0.90
resistance factor for compression = 0.85
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Chapter 1

GENERAL PRINCIPLES

1.1 CONCEPTS OF STABILITY

When a change in the geometry of a structure or structural component
under compression will result in the loss of its ability to resist loadings,
this condition is called instability. Because instability can lead to a
catastrophic failure of a structure, it must be taken into account when
one designs a structure. To help engineers to do this, among other types
of failure, a new generation of designing codes have been developed
based on the concept of limit states.

In limit states design, the structure or structural component is designed
against all pertinent limit states that may affect the safety or performance
of the structure. Basically, there are two types of limit states: The first
type, Strength limit states, deals with the performance of structures at
their maximum load-carrying capacities. Examples of strength limit states
include structural failure due to either the formation of a plastic collapse
mechanism or to member or frame instability. Serviceability limit states,
on the other hand, are concerned with the performance of structures
under normal service conditions. Hence, they pertain to the appearance,
durability, and maintainability of a structure. Examples of serviceability
limit states include deflections, drift, vibration, and corrosion.

Stability, an important constituent of the strength limit states, is dealt
with explicitly in the present American Institute for Steel Construction
(AISC) limit state specification.! Although the importance of considering
stability in design is recognized by most practicing engineers, the subject
still remains perplexing to some. The reason for this perplexity is that the
use of first-order structural analysis, which is familiar to most engineers,
is not permissible in a stability analysis. In a true stability analysis, the
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2 General Principles

change in geometry of the structure must be taken into account; as a
consequence, equilibrium equations must be written based on the
geometry of a structure that becomes deformed under load. This is
known as the second-order analysis. The second-order analysis is further
complicated by the fact that the resulting equilibrium equations are
differential equations instead of the usual algebraic equations. Conse-
quently, a mastery of differential calculus is a must before any attempt to
solve these equations.

In what follows, we will explain the nature of structural stability and
ways to analyze it accurately.

The concept of stability is best illustrated by the well-known example
of a ball on a curved surface (Fig. 1.1). For a ball initially in equilibrium,
a slight disturbing force applied to the ball on a concave surface (Fig.
1.1a) will displace the ball by a small amount, but the ball will return to
its initial equilibrium position once it is no longer being disturbed. In this
case, the ball is said to be in a stable equilibrium. If the disturbing force is
applied to a ball on a convex surface (Fig. 1.1b) and then removed, the
ball will displace continuously from, and never return to, its initial
equilibrium position, even if the disturbance was infinitesimal. The ball in
this case is said to be in an unstable equilibrium. If the disturbing force is

FIGURE 1.1 Stable, unstable, and neutral
equilibrium
10 !

(a) STABLE EQUILIBRIUM

e,

(b) UNSTABLE EQUILIBRIUM

(c) NEUTRAL EQUILIBRIUM



1.1 Concepts of Stability 3

(a)

(b)

FIGURE 1.2 Effect of finite disturbance

applied to the ball on a flat surface (Fig. 1.1c), the ball will attain a new
equilibrium position to which the disturbance has moved it and will stay
there when the disturbance is removed. This ball is said to be in a neutral
equilibrium.

Note that the definitions of stable and unstable equilibrium in the
preceding paragraph apply only to cases in which the disturbing force is
very small. These will be our definitions of stability. However, keep in
mind that it is possible for a ball, under certain conditions (Fig. 1.2), to
go from one equilibrium position to another; for example, a ball that is
“stable” under a small disturbance may go to an unstable equilibrium
under a large disturbance (Fig. 1.2a), or vice versa (Fig. 1.2b).

The concept of stability can also be explained by considering a system’s
stiffness. For an n-degrees-of-freedom system, the forces and displace-
ments of the system are related by a stiffness matrix or function. If this
stiffness matrix or function is positive definite, the system is said to be
stable. The transition of the system from a state of stable to neutral



