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Preface to the 4" Edition

Thc first edition of Fundamentals of Momentum, Heat, and Mass Transfer, published in
1969, was written to become a part of what was then known as the “engineering science
core” of most engineering curricula. Indeed, requirements for ABET accreditation have
stipulated that a significant part of all curricula must be devoted to fundamental subjects.
The emphasis on engineering science has continued over the intervening years, but the de-
gree of emphasis has diminished as new subjects and technologies have entered the world
of engineering education. Nonetheless, the subjects of momentum transfer (fluid mechan-
ics), heat transfer, and mass transfer remain, at least in part, important components of all
engineering curricula. It is in this context that we now present the fourth edition.

Advances in computing capability have been astonishing since 1969. At that time, the
pocket calculator was quite new and not generally in the hands of engineering students.
Subsequent editions of this book included increasingly sophisticated solution techniques
as technology advanced. Now, more than 30 years since the first edition, computer compe-
tency among students is a fait accompli and many homework assignments are completed
using computer software that takes care of most mathematical complexity, and a good
deal of physical insight. We do not judge the appropriateness of such approaches, but they
surely occur and will do so more frequently as software becomes more readily available,
more sophisticated, and easier to use.

In this edition, we still include some examples and problems that are posed in English
units, but a large portion of the quantitative work presented 1s now 1n SI units. This is con-
sistent with most of the current generation ot engineering textbooks. There are still some
subdisciplines in the thermal/fluid sciences that use English units conventionally, so it re-
mains necessary for students to have some familiarity with pounds, mass, slugs, feet, psi.
and so forth. Perhaps a fifth edition, if it materializes, will finally be entirely SI.

We, the original three authors (W-), welcome Dr. Greg Rorrer to our team. Greg is a
member of the faculty of the Chemical Engineering Department at Oregon State Univer-
sity with expertise in biochemical engineering. He has had a significant influence on this
edition’s sections on mass transfer, both in the text and in the problem sets at the end of
Chapters 24 through 31. This edition is unquestionably strengthened by his contributions,
and we anticipate his continued presence on our writing team,

We are gratified that the use of this book has continued at a significant level since the
first edition appeared some 30 years ago. It is our continuing belief that the transport phe-
nomena remain essential parts of the foundation of engineering education and practice.
With the modifications and modernization of this fourth edition, it is our hope that Funda-
mentals of Momentum, Heat, and Mass Transfer will continue to be an essential part of
students’ educational experiences.

Corvalilis, Oregon J.R. Welry

March 2000 C.E. Wicks
R.E. Wilson
G.L. Rorrer
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Chapter 1

Concepts
and Definitions

Momentum transfer in a fluid involves the study of the motion of fluids and the forces
that produce these motions. From Newton’s second law of motion it is known that force
is directly related to the time rate of change of momentum of a system. Excluding action-
at-a-distance forces such as gravity, the forces acting on a fluid, such as those resulting
from pressure and shear stress, may be shown to be the result of microscopic (molecular)
transfer of momentum. Thus the subject under consideration which is historically fluid
mechanics may equally be termed momentum transfer.

The history of fluid mechanics shows the skillful blending of the nineteenth- and
twentieth century analytical work in hydrodynamics with the empirical knowledge in
hydraulics that man has collected over the ages. The mating of these separately developed
disciplines was started by Ludwig Prandtl in 1904 with his boundary-layer theory, which
was verified by experiment. Modern fluid mechanics, or momentum transfer, is both
analytical and experimental.

Each area of study has its phraseology and nomenclature. Momentum transfer being
typical, the basic definitions and concepts will be introduced in order to provide a basis
for communication.

1.1 FLUIDS AND THE CONTINUUM

A fluid is defined as a substance which deforms continuously under the action of a shear
stress. An important consequence of this definition is that when a fluid is at rest, there can
be no shear stresses. Both liquids and gases are fluids. Some substances such as glass are
technically classified as fluids. However, the rate of deformation in glass at normal tem-
peratures is so small as to make its consideration as a fluid impractical.

Concept of a Continuum. Fluids, like all matter, are composed of molecules whose
numbers stagger the imagination. In a cubic inch of air at room conditions there are some
10°” molecules. Any theory which would predict the individual motions of this many mol-
ecules would be extremely complex, far beyond our present abilities. While both the ki-
netic theory of gases and statistical mechanics treat the motions of molecules, this is done
in terms of statistical groups rather than in terms of individual molecules.

Most engineering work is concerned with the macroscopic or bulk behavior of a fluid
rather than with the microscopic or molecular behavior. In most cases it is convenient to think
of a fluid as a continuous distribution of matter or a continuun. There are, of course, certain
instances in which the concept of a continuum is not valid. Consider, for example, the num-
ber of molecules in a small volume of a gas at rest. If the volume were taken small enough,
the number of molecules per unit volume would be time-dependent for the microscopic vol-
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ume even though the macroscopic volume had a constant number of molecules in it. The con-
cept of a continuum would be valid only for the latter case. The validity of the continuum ap-
proach is seen to be dependent upon the type of information desired rather than the nature of
the fluid. The treatment of fluids as continua is valid whenever the smallest fluid volume of
interest contains a sufficient number of molecules to make statistical averages meaningful.
The macroscopic properties of a continuum are considered to vary smoothly (continuously)
from point to point in the fluid. Our immediate task is to define these properties at a point.

1.2 PROPERTIES AT A POINT

When a fluid is in motion the quantitics associated with the state and the motion of the
fluid will vary from point to point. The definition of some fluid variables at a point is pre-
sented below.

Density at a Point. 'The density of a fluid is defined as the mass per unit volume. Under
flow conditions, particularly in gases, the density may vary greatly throughout the fluid.
The density, p, at a particular point in the fluid is defined as
— Jim A
p AV a8V AV
where Am is the mass contained in a volume AV, and 6V is the smallest volume surrounding
the point for which statistical averages are meamingful. The limit is shown in Figure 1.1.

1 ‘

Molecular domain <—;—-> Continuum domain

A
AV |

AV
Figure 1.1 Densitly at a point.

The concept of the density at a mathematical point, that is, at AV = 0 is seen to be ficti-
tious; however, taking p = limy, _, (Am/AV) is extremely useful, as it allows us to describe
flurd flow in terms of continuous functions. The density, in general, may vary from point to
point in a fluid and may also vary with respect to time as in a punctured automobile tire.

Fluid Properties and Flow Properties. Some fluids, particularly liquids, have densities
which remain almost constant over wide ranges of pressure and temperature. Fluids which
exhibit this quality are usually treated as being incompressible. The effects of compressibil-
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ity, however, are more a property of the situation than of the fluid itself. For example, the
flow of air at low velocities is described by exactly the same equations that describe the flow
of water. From a static viewpoint air is a compressibie fluid and water incompressible. In-
stead of being classified according to the fluid, compressibility effects are considered a prop-
erty of the flow. A distinction, often subtle, is made between the properties of the fluid and
the properties of the flow, and the student is hereby alerted to the importance of this concept.

Stress at a Point. Consider the force AF acting on an element AA of the body shown in
Figure 1.2. The force AF is resolved into components normal and parallel to the surface of
the element. The force per unit area or stress at a point is defined as the limit of AF/AA as
AA — 8A, where 84 is the smallest area for which statistical averages are meaningful

. AF, 4
im =0,
a4 54 AA " At—sA AA

lm —— =71,

Figure 1.2 Force on an element of fluid.

Here o, is called the normal stress and 7, the shear stress. In this text the double-
subscript stress notation as used in solid mechanics will be employed. The student will
recall that normal stress is positive in tension. The limiting process for the normal stress is
illustrated in Figure 1.3.

1 |

Molecular domain 1——;—> Continuum domain

AF,

n

|
|
|
!
i
\
\
!
|
|
AA ! -
L
|
!
\
|
\
!
\
|

o
I
|

———— a4

AA

Figure 1.3 Normal stress at a point.
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Forces acting on a fluid are divided into two general groups: body forces and surface
forces. Body forces are those which act without physical contact, for example, gravity and
electrostatic forces. On the other hand, pressure and frictional forces require physical con-
tact for transmission. Since a surface is required for the action of these forces they are
called surface forces. Stress is therefore a surface force per unit area.*

Pressure at a Point in a Static Fluid. For a static fluid, the normal stress at a point may
be determined from the application of Newton's laws to a fluid element as the fluid ele-
ment approaches zero size. It may be recalled that there can be no shearing stress in a sta-
tic Aluid. Thus the only surface forces present will be those due 10 normal stresses.
Consider the element shown in Figure 1.4. This element, while at rest, is acted upon by
gravity and normal stresses. The weight of the fluid element is pg(Ax Ay Az/2).

Figure 1.4 Elcment in a static fluid,

For a body at rest, ZF = 0. In the x direction
AF, — AF sinf =0
Since sin § = Ay/As, the above equation becomes

Ay

— AF e
AF, = AF, As

0

Dividing through by Ay Az and taking the limit as the volume of the element ap-

proaches zero, we obtain
. AF, AF,
lim ' —| =0

av—o] Ay Az  AsAz
Recalling that normal stress is positive in tension, we obtain, by evaluating the above
equation
T = (% (]'1)

In the y direction, applying =F = 0 yields

AxAyAz

> 0

AF, — AF, cos 8 — pg

* Mathematically. stress is classed as a tensor of second order. since it requires magnitude. direction, and
orientation with respect to a plane tor its determination.
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Since cos 0 = Ax/As, one has

Ay ArvAy Az
As PE —H T
Dividing through by Ax Az and taking the limit as before, we obtain
[ AF. AF, pgﬁy] .

AF, — AF, 0

Iim
AV—0

ArAz AsAz 2

which becomes

Oy, +o, — %

or
(1-2)

G\"\* = Oy

It may be noted that the angle # does not appear in equation (1-1) or (1-2), thus the
normal stress at a point in a static fluid is independent of direction, and is therefore a
scalar quantity.

Since the element is at rest, the only surface forces acting are those due to the nor-
mal stress. If we were to measure the force per unit area acting on a submerged element,
we would observe that it acts inward or to place the element in compression. The quan-
tity measured is, of course, pressure, which in light of the preceding development, must
be the negative of the normal stress. This important simplification, the reduction of
stress, a tensor, to pressure, a scalar, may also be shown for the case of zero shear stress
in a flowing fluid. When shearing stresses are present, the normal stress components at
a point may not be equal; however, the pressure is still equal to the average normal
stress; that is

P = _,1(0-\\ + 0\‘\‘ + U':,)

with very few exceptions, one being flow in shock waves.
Now that certain properties at a point have been discussed, let us investigate the man-
ner in which fluid properties vary from point to point.

1.3 POINT-TO-POINT VARIATION
OF PROPERTIES IN A FLUID

In the continuum approach to momentum transfer, use will be made of pressure, tempera-
ture, density, velocity, and stress fields. In previous studies the concept of a gravitational
field has been introduced. Gravity, of course, is a vector, and thus a gravitational field is a
vector field. In this book, vectors will be written in boldfaced type. Weather maps illus-
trating the pressure variation over this country are published daily in our newspapers.
Since pressure is a scalar quantity, such maps are an illustration of a scalar field. Scalars
in this book will be set in regular type.

In Figure 1.5 the lines drawn are the loci of points of equal pressure. The pressure, of
course varies continuously throughout the region, and one may observe the pressure lev-
els and infer the manner in which the pressure varies by examining such a map.

Of specific interest in momentum transfer is the description of the point-to-point vari-
ation in the pressure. Denoting the directions east and north in Figure 1.5 by x and y, re-
spectively, we may represent the pressure throughout the region by the general function
P(x, y).



