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PREFACE

The serial publication, ‘““Advances in Heat Transfer,” is designed to
fill the information gap between the regularly scheduled journals and
university level textbooks. The general purpose of this series is to
present review articles or monographs on special topics of current
interest. Each article starts from widely understood principles and in
a logical fashion brings the reader up to the forefront of the topic. The
favorable response to the first six volumes by the scientific and engineer-
ing community is an indication that our authors have competently
fulfilled this purpose.

The editors are pleased to announce the publication of Volume 7
and wish to express their appreciation to the current authors who have
so effectively maintained the spirit of the series.
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2 W. B -Hair
I. Introduction

The rapid growth of research activity in supercritical heat transfer
over the past ten or fifteen years is a consequence of several trends in
engineering. There has been a steady development of steam plant towards
supercritical conditions, and supercritical water has been considered as
a coolant for several types of nuclear reactors. Helium is used at near-
critical conditions as a coolant for the conductors of electrical machines,
and rocket motors are frequently cooled by pumping fuel through
cooling pipes at supercritical pressure.

From a fundamental standpoint, the problem has been regarded as
one in which the variation of physical properties with temperature
becomes extremely important. Effects which, with most fluids, may be
treated as small perturbations of the “constant property” idealization,
sometimes become dominant, rendering existing theoretical models and
empirical correlations useless. In some cases phenomena appear which
have no counterpart with constant property fluids. At the same time
experimental difficulties have hampered the investigation of these effects.
These are not merely the difficulties of operating equipment at high
pressures, but also the problems of compressibility (which becomes very
high near the critical point and makes the density sensitive to relatively
small pressure variations) and of specific heat (which' also becomes
large and hinders the accomplishment of thermal equilibrium).

It might be thought that heat transfer experiments of such complexity
would have little to contribute to the understanding of basic mechanisms.
It is true that in constructing models of the process one is forced to
introduce additional assumptions which are difficult to test; nevertheless,
there are some cases where extreme property variations afford a much
more strmgent test of some aspects of current theories than could be
obtained in other ways. An example of this is the interaction between
forced and free turbulent convection; with a supercritical fluid the trend
of the results is in the opposite sense to that which one would expect.
This may well lead to a reexamination of the same problem for fluids
with small property variations.

The near-critical region may be thought of as that regnon in which
boiling and convection merge. When the pressure is sufficiently sub-
critical or supercritical, the problem tends towards either a boiling
problem or a constant property convection problem; under such condi-
tions existing theoretical and empirical methods are generally adequate.
We shall concentrate on the region rather close to the critical point where
the property variations are severe and where there are very significant
heat transfer effects. Such effects are usually found in a range of pressures
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from the critical up to about 1.2 times the critical; they are genérally
largest when the temperatures of the hotter surface and the fluid span
the critical temperature. . :

‘We begin with a brief description of the behavior of thermodynamic
and transport properties near the critical point. The equations of con-
tinuity, momentum, and energy are then examined with a view to
revealing the effect of variable properties and deciding whether the same
simplifications can be made as are common with a constant property
fluid. A discussion of the various modes of heat transfer then follows,
particular attention being given to the interaction between forced and

free convection.

IL. Physical Properties near the Critical Point

A. THERMODYNAMIC PROPERTIES

The properties of a fluid near its critical point have interested thermo-
dynamicists for the past hundred years. This is hardly surprising in view
of the singular behavior in this region: the classical description indicates,
for example, that the compressibility and the specific heat at constant
pressure both become infinite at the critical point. These factors make
experimentation difficult; it is evident that as (oV]ap), becomes large,
the hydrostatic pressure variation in the fluid ‘will lead to significant
density variations even for small changes of height and also that the
approach to thermal equilibrium will be slow as ¢, becomes large.

The present state of knowledge of thermodynamic behavior is not
entirely satisfactory, either from a theoretical or from an experimental
standpoint; nevertheless, it is probably true to say that an understanding
of heat transfer in the critical region is limited more by lack of knowledge
of the heat transfer processes (e.g., turbulent diffusion, effect of buoyancy
forces) than by uncertainties in the thermodynamic properties. In these
circumstances, the classical description of the critical point may still
be adequate. | :

1. The van derAWaalsv Model

In 1873, van der Waals proposed an explanation of thermodynamic
behavior near the critical point. His model, in which an allowance is
made for the attractive and repulsive forces between molecules, leads to
an equation of state of the following form: ‘

(p + {73V —b) = RT st
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The physical arguments underlying the equation are well known and
need not be repeated here; it is sufficiently to note that the constant b
accounts for the strong, short range repulsive forces (imposing a limit
to the reduction of volume as pressure is increased), and the term /72
represents the long range attractive forces betwezen molecules. Figure 1
illustrates the shape of 1sotherms on a p, V diagram, according to van der
Waals equation.

Consider a particular isotherm, marked abedef in Fig. 1. The fluid

Pressure

\
\
\
1
! /J\ f
1
|

]
\"_/ Volume, V

Fi1c. 1. The van der Waals isotherms.

can exist in a homogeneous state along the section of the isotherm marked
abc and def; the section cd represents conditions in which the thermo-
dynamic inequality

@ploV)y < O

is not satisfied, and the fluid would separate into two distinct phases.
The regions bc and de represent, respectively, superheated liquid and
subcooled vapor; the extent of these metastable regions is indicated by
broken lines in Fig. 1. Equilibrium between the liquid and vapor phases
(with a plane interface between them) is achieved with states marked b
and e. (Note that unstable equilibrium between liquid and vapor can be
achieved with a curved interface along bc and de. In these cases, surface
tension forces at the bubble or droplet surface lead to a difference
between the liquid and vapor pressures.)

The isotherm marked o in Fig. 1 is known as the critical isotherm and




HEAT TRANSFER NEAR THE CRITICAL POINT 5

passes through the critical point. It represents the isotherm for which
the points bed and e all coincide, thus giving a point of inflection at the
critical point (CP on Fig. 1), so that

(@ploP); =0 2)
(@ploP™5 = 0 3)

2. The Law of Corresponding States

The behavior of the critical isotherm, as embodied in Eqgs. (2) and (3),
-can be used to eliminate the constants @ and b in the van der Waals
equation as follows: Equation (1) may be written as

p = RT|(V — b) — a|V2
and, using Egs. (2) and (3),

90 \% il +RTS 2a
( or )T—O g (Vc_b)z .3 (1‘7&)3
(821') )‘_0_ 2RTe ol
vt/ T (Pe—bp  (Pop
from which we find that
Ve =3b; pc= 51,7 alb?; T¢ = 8a/27bR

Introducing the “reduced” quantities,
VE=PIP% gt —plp T =TT
the van der Waals equation becomes
(P* + 3[(V*P)3V* — 1) = 8T* )

An interesting aspect of this equation is the fact that it involves only
?* V* and T* and not any quantities that are characteristic of a
particular substance. In the above form it applies only to substances for
which the van der Waals equation is true; however, the same principle
may be stated in more general terms by asserting that there is a unique
relationship between p*, V*, and T* for all substances. This is known as
the principle of corresponding states and is frequently stated in the form

Z = Z(p*, T) )




