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Abstract Drug delivery systems for cancer therapeutics have revolutionized medicine. De-
livery systems have improved the efficacy and reduced the toxicity of current therapies
and resulted in the development of new ones. Today, millions of cancer patients have di-
rectly benefited from drug delivery systems, and polymers have been at the frontline of
these technological advances. Targeted delivery systems of chemotherapeutics to the tu-
mour compartment can be achieved systemically, either passively or actively. Polymer
conjugation radically changes the pharmacokinetics of the bound drug, and conjugates
with prolonged circulation times target tumours passively via the enhanced permeabil-
ity and retention (EPR) effect. Polymer conjugates can also be modified with moieties
to directly target the tumour cells or the tumour vasculature. In this chapter, we review
the successful clinical application of polymer-protein conjugates, and promising clini-
cal results arising from trials with polymer-anticancer-drug conjugates. Over the last
decade more than twelve polymer-drug conjugates have entered Phase I/II clinical trial
as intravenously injectable anticancer agents. Only one of the polymer conjugates that
has reached clinical trial directly targets tumour cells, while another one targets the tu-
mour vasculature. Conjugation to polymers may save the fate of the many promising
drug/peptide chemotherapies that fail each year due to high toxicity or poor pharma-
cokinetics. Yet, these technologies have not been exploited to their full potential. Only
a few combinations of a limited number of chemotherapeutic drugs and polymer delivery
systems are being tested in clinical and preclinical trials today. Furthermore, genomics
and proteomics research is producing novel peptides, proteins and oligonucleotides that
lack effective delivery systems. Thus, the full potential for drug delivery systems based on
NCEs (new chemical entities), such as “polymer therapeutics”, lies ahead.
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MTD Maximum tolerated dose

NCE New chemical entities
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NK Natural killer cells

NSCLC Non-small-cell lung carcinoma

03" Superoxide anion

ONp p-Nitrophenyl

PAAm Polyacrylamide

PCT Paclitaxel

PDAAm Polydimethylacrylamide

PDEPT Polymer directed enzyme prodrug therapy

PEG Polyethyleneglycol

PEG-G-CSF PEGylated recombinant methionyl human granulocyte colony stimulating
factor

PEI Poly(ethyleneimine)

PELT Polymer enzyme liposome therapy
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POG Pediatric Oncology Group

PS2 Poor performance status 2

PVA Polyvinyl alcohol
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X0 Xanthine oxidase
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1

Introduction

Chemotherapeutic treatment of neoplastic diseases is often restricted by ad-
verse systemic toxicity, which limits the dose of drug that can be admin-
istered, or by the appearance of drug resistance. Lack of selectivity is only
one (albeit a major) obstacle hindering the optimisation of drug effective-
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ness. Others include inaccessibility of target, premature drug metabolism and
allergic reactions [1]. There is a great demand for innovative drug delivery
systems that can better target antitumour drugs and that can overcome resist-
ance in its many forms. The question is: how can we meet these challenges?

A great deal of research has concentrated on ways to develop new can-
cer therapeutics that specifically target tumour cells compared with normal
cells, exploiting the differences between neoplastic and normal tissues. These
targeted therapies should be more effective and decrease toxicity to normal
tissues.

Several systems have been developed in order to restrict the delivery of
the chemotherapeutic agent to the tumour site. With the identification of
cell-specific receptor/antigens on tumour cells [2] and tumour endothelial
cells [3], it has been possible to actively target chemotherapeutic or antian-
giogenic agents using ligand- or antibody-bearing delivery systems. Alterna-
tively, the drug can be loaded into high-capacity drug carriers such as lipo-
somes or entrapped in degradable polymers for sustained drug release and
localized chemotherapy systems [4]. In the controlled polymer drug delivery
systems, the active molecule is released continuously at therapeutic levels by
polymer degradation and diffusion through the polymer pores. Clinical ap-
proved examples include Zoladex [5, 6], Lupron Depot, and Decapeptyl [7],
which are injectable polymer rods or microspheres of luteinizing hormone-
releasing hormone (LHRH) analogues for the treatment of advanced prostate
cancer [4,8]. Localized chemotherapy systems have been particularly ap-
pealing for the brain, where the presence of the blood-brain barrier limits
delivery of therapeutics by blood. Gliadel, an implantable polymer wafer
that locally delivers carmustine, has been used successfully for the treatment
of malignant gliomas after surgery [9]. Interestingly, we found that HPMA
copolymer-TNP-470 (caplostatin) [10] was able to treat orthotopic intracra-
nial U87 human glioblastoma in mice [11], even though it does not cross the
blood brain barrier, a fact that eliminated the neurotoxicity associated with
the unconjugated TNP-470. This can be attributed to the leakiness of blood
vessels in some brain tumours, allowing polymer conjugates to target these
tumours by the EPR effect.

Drugs can also be conjugated to polymer carriers, named “polymer
therapeutics” [12], that can be either directly conjugated to targeting
proteins/peptides or derivatised with adapters conjugated to a targeting
moiety. “Polymer therapeutics” [13] is a term used to describe polymeric
drugs [14], polymer-drug conjugates [15], polymer-protein conjugates [16],
polymeric micelles to which a drug is covalently bound [17], and multi-
component polyplexes that are being developed as nonviral vectors [18]
(Fig. 1). All subclasses consist of at least three parts: (a) a specific water-
soluble polymer, either as the bioactive itself or as an inert functional part
of a multifaceted construct for improved drug, protein or gene delivery; (b)
a biodegradable polymer-drug linker, and; (c) the bioactive antitumour drug.
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Polymer
Polymer
Polymeric micelle
E PEGylated liposome
Polypeptide/
Drug/Gene

Fig.1 Schematic diagram of possible combinations of actively targeted conjugates:
A Soluble polymer-protein conjugate (20 nm) or polyplex: hydrophilic polymers bearing
a cationic block-DNA complex (40-60 nm); B Soluble polymeric drug (5-15nm) carrier
(polymer therapeutics, modified from [87]); C Polymeric micelle (60-100 nm) - am-
phiphilic block entrapping a drug; D Soluble polymeric drug carrier bearing a targeting
moiety (5-15nm); E PEGylated stealth liposome carrying the active entity conjugated to
a targeting moiety (200-500 nm)

Because in polymer therapeutics the drugs are chemically conjugated, they
differ from controlled drug delivery systems in that they are more like new
chemical entities (NCE). Not only is their pharmacokinetic profile distinct
from that of the parent drug, but the route of cellular uptake may also dif-
fer, as the polymer-drug can only enter cells by the endocytic route, leading
to lysosomotropic drug delivery. Several conjugates can release drug intracel-
lularly while others release it extracellularly, depending on the polymer-drug
linker and the activating moiety. While polymer therapeutics share many
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features with other macromolecular drugs and prodrugs (proteins, antibod-
ies, and oligonucleotides, and immunoconjugates), their chemistry makes
them amenable to flexible tailoring, for example of their molecular weight,
number and types of drugs per polymer, targeting moieties and even biore-
sponsive elements [12]. Polymer-protein conjugates have made it to the
clinic since the early 1990s, with the approval of polyethylene glycol (PEG)-
adenosine deaminase, PEG-L-asparaginase and styrene maleic anhydride
(SMANCS) [19]. During the past two decades, the field of polymer therapeu-
tics has continued to grow due to the advances in both polymer chemistry
and biological sciences, and promising results from clinical trials involv-
ing polymer-anticancer-drug conjugates [12]. With the emergence of hybrid
biotechnologies, which combine the synthesis of innovative polymers with bi-
ological macromolecules (proteins, oligonucleotides, antibodies), a number
of compounds have been developed that are suitable for clinical development
and use (Tables 1, 2, and 3).

It is surprising, however, that with the abundance of novel drugs and
targets offered in the post-genomic era and novel sophisticated chemistry
available, only four drugs (doxorubicin, camptothecin, paclitaxel and plati-
nate) and four polymers (HPMA copolymer, Poly-L-glutamic acid, PEG, and
Dextran) are repeatedly used to develop these promising new polymer ther-
apeutics. Therefore, we will examine here future directions and challenges
in this field. The purpose of this chapter is to compare different therapeutic
targeted delivery systems and strategies for chemotherapeutic and antian-
giogenic agents, focusing on those polymer therapeutics that have been ap-
proved by the FDA or that are undergoing clinical and preclinical trials. The
rationale for the design of preclinical lead compounds is summarised, and
the challenges for effective and clinical development of these complex macro-
molecular prodrugs are discussed.

2
Passive or active targeting?

Targeting can be achieved either actively, by specifically including a recog-
nition moiety into the carrier (“active targeting”), or passively, as a result
of some physical or chemical characteristics of the carrier (“passive target-
ing”) [20] (Fig. 2). The active approach relies upon the selective localisation
of a ligand at a cell-specific receptor. Passive targeting refers to the exploita-
tion of the natural (passive) distribution pattern of a drug-carrier in vivo. The
latter is based upon mechanical entrapment of the carrier by shape or size
or uptake by the cells of the reticuloendothelial system (RES). Maeda called
the passive targeting phenomenon the “enhanced permeability and retention
(EPR) effect” [21], and attributed it to two factors: the disorganised pathol-
ogy of angiogenic tumour vasculature with its discontinous endothelium,



