Lecture Notes in

Computer Science

Edited by G. Goos and J. Hartmanis '

C BO51043
312

J. van Leeuwen (Ed) o

o Dnstrlbuted Algorlthms

2nd International Workshop .. .
. Amsterdam, The Netherlands July 1987

Proceedmgs

’SpringerQVerlag- .

S D Sy M s e T e T r-j,/w.‘.'.' @ S e s T BB MR S R R .
'“"”'T"“ 5 e s) ot e R o Y Wk 3

?f',{ it 8961043

Lecture Notes in
Computer Science

Edited by G. Goos and J. Hartmanis

312

J. van Leeuwen (Ed.)

L I
('\ ") E8961043

N/

I

Distributed Algorithms

2nd International Workshop
Amste meh Netherlands, July 8—10, 1987

SpringerVerlag | /

Berlin Heidelberg New York London Paris Tokyo

Editorial Board
D. Barstow W.Brauer P, Brinch Hansen D. Gries D. Luckham
C. Moler A.Pnueli G. Seegmiiller J. Stoer N. Wirth

Editor

J. van Leeuwen
Department of Computer Science, University of Utrecht
P.O. Box 80.012, NL-3508 TA Utrec" * ™=~ Matharlandg

TP3-53%
D614,2
1987 8961043

Lecture_noi:es in e
Science

Omputer

~ CR Subject Classification

ISBN 3-540-19366-9 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-19366-9 Springer-Verlag New York Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation,
broadcasting, reproduction on microfilms or in other ways, and storage in data banks. Duplication
of this publication or parts thereof is onIy permitted under the provisions of the German Copyright
Law of September 9, 1965, in its version of June 24, 1985, and a copyright fee must always be
paid. Violations fall under the prosecution act of the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1988
Printed in Germany

Printing and binding: Druckhaus Beltz, Hemsbach/Bergstr.
2145/3140-543210

L e

PREFACE

The 2nd International Workshop on Distributed Algorithms was held at the Centre for Mathematics
and Computer Science (CWI) in Amsterdam, July 8—10, 1987. The workshop was intended to
provide a forum for researchers and other interested parties to discuss the recent results and trends
in the design and analysis of distributed algorithms on communication networks and graphs.
Papers were solicited describing original results in all areas of distributed algorithms and their
applications including, e.g distributed combinatorial algorithms, distributed optimization algo-
rithms, distributed algorithms on graphs, distributed algorithms for control and communication,
routing algorithms, design of network protocols, distributed database techniques, algorithms for
transaction management, fail-safe and fault-tolerant distributed algorithms and other related fields.

The organizational committee for the Workshop consisted of

E. Gafni (UCLA, Los Angeles),
M. Raynal (IRISA, University of Rennes),
N. Santoro (Carleton University, Ottawa),

J. van Leeuwen (University of Utrecht),

S. Zaks (the Technion, Haifa).

Out of the submissions the organizational committee selected twenty-nine papers for presenta-
tion in the Workshop. The selection reflects several current directions of research that are repre-
sentative for the area of distributed algorithms, although certainly not all aspects could be covered
in the three-day Workshop. The participants received draft versions of all papers as part of their
Workshop materials, by way of working proceedings for review.

The present volume contains the revised version of all papers presented in the Workshob, to-
gether with one additional paper (by Y.Afek et al.) that was presented as a general colloquium
(by B. Awerbuch) at the Centre for Mathematics and Computer Science (CWI) outside of the
Workshop program. The revised versions are based on the comments and suggestions received by
the authors during and after the Workshop. Several papers are in the form of preliminary reports
on continuing research, and it is expected that more elaborate versions will eventually appear in
standard scientific journals. While the papers presented in this volume were primarily selected to
serve the purposes of the Workshop, we hope that the papers give a good impression of the current

work in distributed algorithms and stimulate further research.

J. van Leeuwen (Orgamzatmnal Chamnan)
Utrecht March 1988.

CONTENTS

Session 1. (Chairman: Eli Gafni)

A Distributed Spanning Tree Algorithm
K.E. Johansen, U.L. Jorgensen, S.H. Nielsen, S.E. Nielsen and S. Skyum
(Aarhus University).

Fault Tolerant Queries in Computer NetWOTKSoueeiiinenennanenensse et
A. Baratz, I. Gopal(IBM T.J.Watson Research Center).
and A. Segall (Technion).

General and Efficient Decentralized Consensus Protocols
J-C. Bermond, J-C. Konig (Université Paris-Sud) and M.Raynal
(Université de Rennes).

Byzantine Firing Squad using a Faulty External Source
E.T. Ordman (Memphis State University).

Session 2. (Chairman: Michel Raynal)
An Improved Multiple Identification Algorithm for Synchronous Broadcasting Networks
W. Vogler (Technical University of Munich).

On the Packet Complexity of Distributed Selectionoveeivsssssisessein
A. Negro (University of Salerno), N. Santoro (Carleton University)
and J. Urrutia (University of Ottawa).

Load Balancing in a Network of Transputers
O.Vornberger (University of Paderborn).

Session 8. (Chairman: Nicola Santoro)
Experience with a New Distributed Termination Detection Algorithm
F. Mattern (University of Kaiserslautern).

A Distributed Deadlock Avoidance Technique
F. Belik (Lund University).

How to Detect a Failure and Regenerate the Token in the Log(N) Distributed Algorithm for
R elusion ool i g e Ve s S

M. Naimi and M. Trehel (Lab d’Informatique Besancon).

Verification of Connection-Management Protocols
A.A Schoone (University of Utrecht).

vi

Generalized Scheme for Topology-Update in Dynamic Networks
E. Gafni (UCLA).

Laesl kail-sate Network Reset Procedure .. . vt uu i i af dor i de s o R e B s
Y. Afek (AT & T Bell Labs.), B. Awerbuch (MIT)
and E. Gafni (UCLA)

Session 4. (Chairman: Jan van Leeuwen)

Synchronizing Asynchronous Bounded Delay NetWorksc.euuieeeeiunnnnesessnnnnnnnns,
C-T. Chou (UCLA), I. Cidon, L.S. Gopal (IBM T.J. Watson Research Center)
and S. Zaks (Technion).

A Modular Proof of Correctness for a Network Synchronizercoeeeiveiessiunsnnnnnnnss,
A. Fekete (Harvard University), N. Lynch and L. Shrira (MIT)

On the Use of Synchronizers for Asynchronous Communication Networks
K.B. Lakshmanan and K. Thulasiraman (Concordia University).

oo DRl e T e e O R R e e SR IO W e I e ST e
L.M. Kirousis (University of Patras & CWI Amsterdam),
E. Kranakis and P.M.B. Vitdnyi (CWI Amsterdam).

An Optimistic Resiliency Control Scheme for Distributed Database Systems
K. Vidyasankar (Memorial University of Newfoundland)
and T. Minoura (Oregon State University).

- Failsate Scheme for Replicated Information. .oc. i b v il b b ol D e
R. Kerboul (CNET Lannion), R. Kung (CNET Issy-les Moulineauz)
and F. Richard (CNET Lannion).

Session 5. (Chairman: Shmuel Zaks)

IS danizen Fanchion Evaluation on a Ring ...i:..oiuiibiieiinioisilbieions oo it i
K. Abrahamson, A. Adler, L.Higham and D. Kirkpatrick
(University of British Columbia).

b ted Ring Orientation Algorithmo iceineiiiivviiiv i st b it i o
V. Syrotiuk and J. Pachl (University of Waterloo).

Constructing Efficient Election Algorithms from Efficient Traversal Algorithms
H. Attiya (Hebrew University).

@bhmal Resilient Ring Election AIZOTIthMS . .ii.veiiilinnaeisiiiinssrnsnesnsossssionsnsinses i
M.Y. Chan (University of Tezas at Dallas) and F.Y.L. Chin (University of Hong Kong).

Fault-Tolerant Distributed Algorithm for Election in Complete Networksceuuueernn..
H.H. Abu-Amara (University of Illinois at U-C).

Lower Bounds for Synchronous Networks and the Advantage of Local Information
R. Reischuk and M. Koshors (Technical University of Darmstadt).

ety .

) 5

v

A Distributed Spanning Tree Algorithm

Karl Erik Johansen, Ulla Lundin Jgrgensen, Svend Hauge Nielsen,
Sgren Erik Nielsen and Sven Skyum
Computer Science Department, Aarhus University,
DK-8000 Aarhus C, Denmark

Abstract

We present a distributed algorithm for constructing a spanning tree for connected undirec-
ted graphs. Nodes correspond to processors and edges correspond to two way channels.
Each processor has initially a distinct identity and all processors perform the same algo-
rithm. Computation as well as communication is asyncronous. The total number of messa-
ges sent during a construction of a spanning tree is at most 2E+3NlogN. The maximal mes-
sage size is loglogN+log(maxid)+3, where maxid is the maximal processor identity.

1. Introduction

Construction of spanning trees for communication graphs has proven useful and has been
considered in a number of papers ([2, 3, 6, 7, 8, 9]). Other problems such as termination,
extrema finding, and election of a leader all reduce to spanning trees. Most papers on
spanning trees deals with construction of minimum spanning trees. Santoro has shown that
O(E+NlogN) is a lowerbound on the message-complexity for the problem ([9]). The best
known upper bound is 2E+5NlogN ([2]). Recently Lavellee and Roucairol have presented
an algorithm that constructs a spanning tree in a general network with message complexity
N-1+3NlogN provided the algorithm behaves in a balanced manner ([8]). Their worst-case
complexity is again 2E+5NlogN and their message-size is very large. Finally Korach, Mo-
ran and Zaks have shown that finding a spanning tree in a complete graph might be easier
than finding a minimal spanning tree ([7]). In this paper we present an algorithm, having
worst-case complexity 2E+3NlogN, that constructs a spanning tree in an arbitrary network
of processors. The construction is very similar to a construction due to the first four au-

thors of this paper ([4])1, which in turn was inspired by a spanning tree algorithm for
complete graphs presented in ([6]) by Korach, Moran and Zaks.

The algorithm is based on the commonly used model. We consider an undirected connected
graph without selfloops. Each node corresponds to a processor with unique identity, and
each edge corresponds to a two way channel. Each channel has (input) buffers at either

TIn ([5]) Korach and Markowitz have independently presented a 2E+4NlogN algorithm for the same
problem.

endpoint organized as queues. Processors can send and receive messages via channels. The
communication is asyncronous. Messages on a channel are received at an input buffer for a
processor in the order they are sent from the neighbour, they may be arbitrarily but finite-
ly delayed. Initially all processors are in a sleeping state. They wake up spontaneously after
a finite time and start execution of the algorithm. The algorithm is based on a finite state
machine where states have a little memory. In the papers referenced above processors can
either wake up spontaneously or be waked up by receiving messages. This difference in
presentation makes no "visible" difference in the behavior, since messages can be delayed
arbitrarily.

Section 2 contains various concepts and notions needed to explain the algorithm. In Section
3 an overall description of the algorithm is given. The algorithm is given in details in
Section 4. Section 5 contains the proof of correctness while Section 6 contains the analysis
of the algorithm.

2. Definitions and notations

Let G=(V(G),E(G)) be an undirected connected graph without selfloops. We will use {.,.}
to denote undirected edges and (.,.) to denote directed edges. Each node v in G corresponds
to a processor with the unique identity idy=v. V(G)c{1,2, . . . }. Let N=IV(G)| and
E=IE(G)I.

A fragment is a connected subgraph, F=(V(F),E(F)) of G, with no cycles (an undirected
tree). A spanning tree for G is a fragment F, where V(F)=V(G). A spanning forrest is
a set (F1,F2,...,Fg) of fragments, such that V(F;) N V(Fj)=0 for i#j and V(G)=V(F1) U
V(F2) U ... U V(Fk). Given a fragment F=(V(F),E(F)) and a node v in V(F) let
Fy=(V(F),D(Fy)) denote the rooted tree where v is the root, and edges in D(Fy) are direc-
ted towards the root v. Each fragment F is equipped with two not necessarily different
orientations by naming two roots. One is called the centre of F and denoted ¢(F). If (v,w)
is an edge in D(F¢(F)) then {v,w} in E(F) will be called an in-edge for v and an out-
edge for w. The other is called the king of F and denoted k(F). If (v,w) is an edge in
D(Fk(F)) then we call {v,w} an up-edge for v and a down-edge for w. Each fragment

F has a unique identification <level,k(F)> called the colour of F. level will be an integer
in [0,logN].

3. Description of the algorithm

Initially each node v in the network is in a sleeping state. It wakes up spontaneously and
enters after initialization an idle state. Then it constitutes a fragment of size 1 at level 0.
The colour is <0,v> and v is both the centre and the king. During execution of the algo-
rithm each centre in the idle state attempts to send a request(colour)-message along one of
its unprocessed edges in order to combine fragments into larger fragments . If a centre has
no adjacent unprocessed edge, the centre is moved around in a fragment F in a depth-first

fashion in F(F) by sending movecentre-messages until an unprocessed adjacent edge is
found or the algorithm terminates. Assume that we have two fragments F] and Fy with
colours <L1,k(F1)> and <Lp,k(F2)>. Colours of nodes in Fj are then at most, but not
necessarily equal to <Lj,k(Fj)> . During computation they will all receive the colour
<Lj,k(Fj)> sooner or later. Assume furthermore that the centre c| in F{ sends a re-
quest(<L1,k(F1)>) to a node in F> along edge e (see Figure 1). After sending the request cq
enters state waiting_for_accept. The request is routed in the direction of the centre ¢ in
F as long as <L.1,k(F1)> is greater than the colour of the nodes it passes. Nodes which pass

Figure 1. Connecting fragments.

on request-messages also enter the waiting_for_accept state and then only listen to the in-
edge for an accept- or newcolour-message (see later). If a request arrives at a node with
greater colour, the node does not react on the request. In that case nodes which passed on
that request-message will receive a new colour and reenter the idle state. If the request
reaches the centre c), call the route (in both directions) along which the request came for

the request-route. If <L) k(F2)> is less than <L{,k(F1)> then F2 and what has become
of F] (see later) are to be combined into a larger fragment F. To perform a combination c2
sends an accept(L2)-message back through F) along the request-route. Nodes on the route,
including c itself, enter state waiting_for_new_colour. When cj receives the accept-

message it might have become centre in a larger fragment, than it was when it sent the re-
quest to F). It might also be in state waiting_for_new_colour in which case Fj is in the
process of being combined with yet another fragment F3 and will receive a new colour in
connection with that combination. In both cases c] has sent an accept-message after sending
the request-message to F). This possibility is necessary to prevent dead-locks. If c1 is wait-
ing for a new colour, it waits until it has received a new colour before it goes on, otherwise
it immediately initiates the final part of the combination of F'1 and Fp, where F'q is the
present fragment containing c1 as its centre. The combination of F'{ and Fp will be a frag-
ment F consisting of F'1, F2 and the edge e along which c{ sent the request to F2. The cen-

tre for F will be ¢, the king will be k(F'1) and the new level L will be L'y, if L' is greater
than L, and L'{+1 otherwise. (L' is the level of F'1). c1 stops being a centre and starts
colouring F7 by sending a newcolour(<L,k(F'1)>)-message along e. The newcolour-mes-
sage is broadcast to all nodes in F) via tree-edges. During colouring of F7 the orientation
with respect to up and down in Fg(F) is updated. When ¢ receives its new colour, it reen-
ters the idle state and we say that F has been formed. If <L .k(F'1)> differs from c1's co-
lour, F'1 is also coloured by sending newcolour-messages. The reason for choosing k(F'1)
as king for F is that nodes in F'1 do not necessarily receive a new colour in connection with
the combination.

If a centre c in a fragment F sends a request along an unprocessed edge e to a node v in the
same fragment, then v's colour might be less than the colour sent with the request and v
cannot know that it comes from the same fragment (see Figure 2). The request might the-
refore be forwarded in the direction of the centre as described above. Sooner or later the
request-message will meet a node u with the same colour as c (it might be c itself) and will
not be sent any further. When v later on receives the colour of c, it recognizes that the re-
quest it forwarded was received from the centre of its own fragment and it sends a close-
message back along the edge e to ¢ and marks the edge closed. Upon reception of the close-
message ¢ marks the edge e closed as well and reenters the idle state.

Figure 2. The route followed by a request from a centre to a node in its own fragment

The preceding description gives the overall picture of the algorithm but due to parallelism,
messages might cross each other, which adds tedious details to the algorithm.

4. The algorithm

During computation, nodes (or processors) mark their adjacent edges (or channels) with
attributes. More attributes can be attached to each edge and the attributes at the two end-
points might differ. The possible attributes are:

open. All edges adjacent to a node are marked open by that node when it wakes up.
Messages will only be sent along open edges. (Edges which are only marked open have
been and will be referred to as unprocessed).

closed. No messages will be sent along closed edges.

branch. A node marking an edge, with the attribute branch, knows that the edge is part
of the fragment and will be part of the final spanning tree. (Edges marked branch at
both ends have been and will be referred to as tree-edges).

in, out, up, and down. The edge is an in-edge (out-, up-, or down-edge resp. See Sec-
tion 2). Only branch-edges will be attached those attributes.

Nodes can send a number of different messages along open edges. There are five different
message types that can be send, namely:

request, accept, close, newcolour, and movecentre. Request and newcolour carry a
colour as parameter, accept has a level as parameter, while close and movecentre are
without parameters.

Nodes can be in a number of different states <st,stp>. Apart from the various attributes
attached to edges mentioned above, only information about at most one edge and one co-

lour has to be stored in a node. We have chosen to store that information within the states.
st] is either centre or ordinary while st) is one of the following:

sleeping. Initially all nodes are sleeping.

waiting_for_accept(colour,e). The node is a centre and has sent a request(colour)
along e or it is not a centre and has forwarded a request(colour) which was received
along e.

waiting_for_new_colour(e). The node has sent (or forwarded) an accept-message
along e and waits for a new colour.

terminated. The node knows all its adjacent tree-edges and has finished its participation
in the distributed computation.

idle. The node takes part in the computation, but is in none of the former four states.

At termination of the distributed algorithm (all nodes are in state terminated) all edges will
be marked closed at both ends. Edges will be either tree-edges or not being marked branch
in either endpoint in which case they are called cross-edges.

Each node or processor v in state <st],st2> executes the following algorithm. The frag-
ment including v is referred to by F and has colour=<L,id>. A(v) denotes the adjacent
edges. The edges in A(v) are ordered such that, if we choose an edge with a specific pro-
perty, it is assumed that we always choose the first edge in the ordering with that property.
This is important when requests are sent from idle centres.

R N 3 0 S L A I A o pIe U L

b repeat
, case <sty,stp> of
<#,sleeping> :

<st],stp>:= <centre,idle>; colour:=<0,v>; for all e in A(v) do mark(e):={open} od;

<centre,idle> , <centre,waiting_for_accept(colour,e)> :
if inputbuffer for an edge e in A(v) is nonempty then m:=read buffer o
case m of

close: {if sty = waiting_for_accept then e]=e}
mark(e1):=mark(e1)-{open }+{closed }; stp:=idle;
request(coloury):
if colour < colourj then send accept(L) along ey;
stp:=waiting_for_new_colour(e1) fi;
accept(L1): {if st = waiting_for_accept then e1=¢}
if L] = L then L:=L+1; colour:=<L,id>;
for all e in A(v) where out in mark(e)) do
send newcolour(colour) along €3 od fi;
send newcolour(<L,id>) along e; mark(e):={open,down,in,branch};
<st],stp>:=<ordinary,idle>;
endcase
else if stp=idle then
if there is an e in A(v) where mark(e)={open} then
send request(colour) along e; stp:=waiting_for_accept(colour,e)
else if there is an e in A(v) where {open,down} < mark(e) then
send movecentre along ¢; mark(e):=mark(e)-{out}+{in}; st1:=ordinary
else if there is an e in A(v) where {open,up} < mark(e) then

send movecentre along e; mark(e):=mark(e)-{open,out }+{closed,in };
<st,stp>:=<ordinary,terminated>

else stp:=terminated fi fi fi fi;

<#,waiting_for_new_colour(e)>:

if inputbuffer for e is nonempty then m:=read buffer e;
case m of

newcolour(coloury):
colour:=colour]; mark(e):={ open,up,out,branch };
for all ej#e in A(v) where branch in mark ¢ do
send newcolour(colour) along e{;
if up in mark(e) then mark(e1):=mark(e1)-{up}+{down} fi od; sty:=idle;
request(coloury): {skip};
endcase fi;

<ordinary,idle> :
if an inputbuffer for an edge e in A(v) is nonempty then m:=read buffer e;
case m of
request(coloury) :

if colour < colourj then
for the in-edge e in A(v) do
if e#e1 then send request(colouri) along ey;
sty:=waiting_for_accept(coloury,e) fi od
else if (colour = coloury) and mark(e) = {open} then
send close along e; mark(e):= {closed} fi fi;
newcolour(<L1,id1>) :
colour:=<L1,id1>;
if (dlown in mark(e)) and (idj#id) then mark(e):=mark(e)-{down }+{up} fi;
for all ej#e in A(v) where branch in mark(e) do
send newcolour(colour) along ey; if (up in mark(e1)) and (id{#id) then
mark(eq):=mark(e1)-{up}+{down} fi od;
movecentre :
if down in mark(e) then mark(e):=mark(e)-{open }+{closed} fi;
mark(e):=mark(e)-{in}+{out}; st]:=centre
endcase fi;

<ordinary,waiting_for_accept(coloury,e)> :
if the inputbuffer for the in-edge e in A(v) is nonempty then m:=read buffer e;

case m of
request(colour)): { This might occur if v has just been a centre - skip}
accept(L) :

send accept(L) along e; stp:=waiting_for_new_colour(e)
newcolour(coloury) :

if colour] <= colour) then stp:=idle;
if (colour|= colourp) and mark(e)={open} then
send close along e; mark(e):={closed} fi fi;
for all out-edges e in A(v) do send newcolour(colourp) along ep;
if (up in mark(e)) and (idp#id) then
mark(e2):=mark(ep)-{up}+{down} fi od;
colour:=colourp;
movecentre:
if down in mark(e) then mark(e):=mark(e)-{open }+{closed} fi;
mark(e):=mark(e)-{in}+{out}; send accept(L) along e;
<st1,stp>:=<centre,waiting_for_new_colour(e)>;
endcase fi;

endcase until stp=terminated;

S. Correctness of the algorithm

For each node at most one message is read during an execution of a cycle of the algo-
rithm.We may therefore w.l.o.g. assume that time is discrete (-N,-N+1,...,0,1,2,....) and
exactly one node executes one cycle of the algorithm for each time instance t. We may fur-
thermore assume that all nodes are awake and that no messages have been read at time 0.

Lemma 5.1

When a node v terminates then all nodes u, which can be reached from v following down-
edges (coincides with out-edges), will be terminated as well (and have no open adjacent
edges).

Proof

For t=0 no node is terminated, so the Lemma trivially holds true. If a node v terminates at
time t, then v has at most one open adjacent edge (an up-edge). Since all down-edges {v,w}
are closed v has received a movecentre-message along these edges indicating that "down-
neighbours” w are terminated. Thus the Lemma follows by induction in t.

.Corollary 5.2
If a node u has an open adjacent edge, a nonterminated centre ¢ (possibly u itself) can be
reached from u following in-edges marked open.

Lemma 5.3
If there is more than one centre at time t, then every pair of centres c| and ¢ are connected
by an open path (a path where all edges are marked open at both endpoints).

Proof

The Lemma holds true for t=0 because the network is connected and all edges are open.
The Lemma will remain true from time t to t+1 if the node v executing its cycle at time t
does not mark any new edge closed. Therefore assume that the Lemma holds true at time t
and that node v closes an edge at time t.

There are four possibilities: (1) v closes an up-edge and terminates, (2) v closes a down-
edge {v,w} after receiving a movecentre-message along {v,w}, (3) v closes {v,w} if w is
centre in the fragment containing v at time t and v has received a request from w with v's
colour or v has received a newcolour-message with the same colour as the colour of an ear-
lier request from w, or (4) v closes {v,w} after receiving a close-message along {v,w}.

Ad (1): By Lemma 5.1 no path of open edges goes through v so the connectivity of centres
with respect to open edges is not affected by this operation.

Ad (2): Receiving a movecentre-message along a down-edge {v,w} indicates that w has
terminated and again by Lemma 5.1 we get that {v,w} does not contribute to the connecti-
vity of centres.

Ad (3): Before v closes {v,w} at time t, there exists a cycle of open edges containing v and

w. Breaking this cycle does not affect the connectivity either.
Ad (4): Similar to case 3.

Lemma 5.4
No cycle of tree-edges can be formed.

Proof

A cycle could only be formed if a centre ¢ would accept a request that was initiated by ¢
itself. That will never happen since the colour of a node is nondecreasing during computa-
tion.

Lemma 5.5
The number of tree-edges equals the difference between the total number of nodes and the
number of centres.

Proof
The Lemma holds true initially and creation of a new tree-edge and deletion of a centre
happen at the same time instance for a node in state <centre,waiting_for_accept(*,*)> after
receiving an accept-message.

Theorem 5.6
The algorithm will terminate (all nodes are terminated). At termination all edges are clos-
ed and the tree-edges form a spanning tree.

Proof

The analysis of the number of messages sent (see Section 6) implies that the network will
reach a stable situation, where no more messages will be sent and no more computing go
on. Let the network be stable at time t . Assume that ¢ is a nonterminated centre of maximal
colour present in the network at time t, if such one exists. ¢ cannot be idle because an idle
centre can execute a cycle of computation in all circumstances. If ¢ is waiting for an accept
along {c,v}, then {c,v} would be open and an open path from v to a nonterminated centre
¢ (possibly c) along in-edges would exist (Corollary 5.2). The maximality of ¢'s colour
then implies that an accept- or close-message will be sent along {c,v} to c at a later time
than t, which is a contradiction. If ¢ is waiting for a new colour, it will eventually receive
one, so this is impossible as well. Thus all present centres will be terminated and by Coroll-
ary 5.2 all edges will be closed. Lemma 5.4 then implies that exactly one centre exists. It
finally follows from Lemmas 5.3 and 5.5 that the set of tree-edges form a spanning tree.

Remark. At the time of termination one node knows that the algorithm is terminated, na-
-mely the node terminating into state <centre,terminated>.

