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Explanatory Remarks

The book is intended to be a monograph for researchers and advanced graduate
courses. I view the following parts of the book as the most important contributions.

1) I feel that studying representation issues on graphs is very natural, and has not
been studied in and of itself before. I have included a large number of open prob-
lems in the field, which I hope will stimulate research.

2) The issues raised in the optimization chapter, refining the notions of what it
means to solve a problem on a class of graphs, have struck some people I have
talked to as radical ideas, but I think that they are completely correct, natural,
and important.

3) The recognition chapter gives a much more current view of important algorithmic
developments in the field of intersection graph classes than is currently available
(the current standard is Golumbic’s book from 1980).

4) Some of the individual classes of graphs are important, and not covered ade-
quately in any current text.

Let me now present a ‘road map’ of the book. Chapter 1 deals with background,
and discusses some very general issues regarding representation of graphs. Chapter
2 presents a specific model called implicit representation, which forms one of the
main topics of the book. Chapter 3 gives a brief overview of known graph classes
which have good representations; these classes will arise repeatedly throughout the
book, but the chapter can be used as a reference if the reader desires, rather than as
required reading. A general notion of representing a graph by intersection models
is studied at the end of the chapter. Together, chapters 1-3 can be viewed as an
introduction, with chapter 2 being particularly crucial.

Chapters 4-12 deal with graph classes which seem particularly challenging to
represent. In most of these chapters, the unifying concept is a method for defining a
graph class, with individual sections devoted to particular graph classes which can
be defined in this way. In chapters 6 and 9, we discuss individual graph classes that
pose particularly interesting problems with respect to computer representation.

Chapter 13 deals with recognition algorithms for graph classes. Perhaps be-
cause I view recognition algorithms as my particular area of expertise, considerable
space is devoted to trying to present algorithms for a large number of graph classes
where the algorithm has previously been viewed as too complex for presenting in a,
general text.
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Chapter 14 deals with new issues which arise when solving problems on graph
classes which have special forms of representation. The concept of a robust algo-
rithm is introduced as a new requirement for an algorithm. Examples of tractable
and intractable problems for robust algorithms are presented.

Chapter 15 deals with issues of constructing representations which are different
from existence of representation for a graph class, and chapter 16 presents a brief
look at some of the applications which have come about since the publication of
previous books which in general cover applications of graph classes in more detail
than this book.

I feel that a course based on this book should include chapters 2 and chapter
14. Choice of other chapters can be based on which graph classes are judged most
interesting by the instructor. As a computer scientist, I spend a great deal of time
on chapter 13, but a course designed for mathematicians might place less emphasis
on this material. I choose to take at least some material from each chapter in my
course, but it is also possible to devote more time to a smaller number of chapters.

A number of chapters include material which has not been published in any
form before. Of particular interest in this context is the chapter on matrices, and
the section on induced visibility graphs. Much of the material in the chapter on
intersection of graph classes is also new, but the results there are much more partial
and are included primarily to introduce new open problems.

I have left out many topics that are at least somewhat relevant. For exam-
ple, the work started by Galparin and Wigderson relating time complexity of very
simple problems to graph classes with extremely efficient representations could be
considered for inclusion. I may feel particularly guilty about this omission since
it was my introduction to thinking about graph representation size, but have cur-
rently chosen not to include it since the techniques used are quite different from
those stressed in the rest of the book.

The exercises in this book vary considerably in level of difficulty. I have in-
tentionally included many problems which are quite challenging; some of these are
marked with a star. It has been a goal to have a sufficient quantity and variety
of exercises to be interesting for either a fresh student in the field, or for someone
with some research experience. As a collector of problems, both open and home-
work, I would love to hear of good problems for possible future inclusion from any
interested reader. If there is sufficient interest, I intend to maintain a list of open
problems relating to this work on the web.

I should add one other general comment on an issue that could disturb some
readers. There is a certain type of proof which is important to include in a journal
article, but which I think should not be included in a text. For example, suppose
that we show that if z is adjacent to y in a graph of a certain type, we can always
find a forbidden induced subgraph, and this can be proved by simply examining a
large number of cases. An algorithm for working on graphs without these forbidden
subgraphs might then assume that x and y are nonadjacent. It is important to
know that this result is correct, which is why a proof must be verified in a journal.
However, the reader who wants to understand the algorithm only needs to know
that  and y are nonadjacent, and if simply stating this as a fact clarifies the
description of an algorithm, I prefer to give the result without a proof. Thus, in
many sections, proofs are left to the journal and omitted from this book. Of course,
I may have omitted (or inadvertently included) individual proofs in a fashion that
is not consistent with the rest of the book.
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CHAPTER 1

Introduction

Graph theory has developed into a very broad field since its introduction by
Euler in the 18th century. Graphs are an intuitively pleasing and flexible method
for dealing with relationships between objects, and are used in so many areas of
mathematical research that they need no justification for study in their own right.
This book is written from both a mathematical and computer science perspective.
In the mathematical tradition, graphs and classes of graphs are studied with no
specific applications in mind, although many of the classes discussed arose from
important applications. Since my research area is graph algorithms, I place much
greater emphasis on algorithms for dealing with problems than is found in most
mathematical texts. Hopefully, the reader will agree that synthesizing the two
traditions opens a number of interesting new research areas, and new open problems
can be found throughout this book.

I have always been interested in representations of graphs. There are at least
two natural areas of research which spring to mind if one talks of graph represen-
tation. One approach is to think of how to make a graph, typically described by
a set of connections between points, into a picture which is easily understood by a
human. This area of research is called graph drawing. The field of graph drawing
has become very popular recently, and while I enjoy reading books on this area
such as [30], I am not the person to write such a book. As well as not being my
research area, anyone who has seen my office or choice of clothing would agree that
I am not qualified to work in an area in which one must decide whether the result
is aesthetically pleasing!

The subject of this book can be viewed as the reverse process of graph drawing,.
In graph drawing, we imagine a representation of a graph is given which is easy for
a machine to work with, and we want to convert this into a representation which
can be viewed easily by a human. This book talks about methods for storing graphs
which make them easy for the computer to work with. I choose to call this topic
efficient graph representation. I will use the term efficient representation informally
throughout the book to capture a variety of good properties for a representation.
We will develop certain well defined notions of efficient representations in later
chapters.

The closest generally accepted area of research to the work here is the field
of intersection graphs. Golumbic’s book [223] has had a major effect on both the
study of intersection graphs, and my own research. In general, I have tried to avoid
going deeply into subjects which are well covered by Golumbic. Other good books
which are related or have affected my own work include [461], [482], [194], [361].
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1.1 Graph Theory Background and Terminology

Definitions of terms used in this book are given in the glossary. This section
presents a few fundamental definitions, emphasizing usage of common terms which
have alternative definitions in the field.

A graph G = (V,E), where V is a set of vertices, and E is a set of edges.
Each edge corresponds to a pair (z,y) of vertices. If the edges are ordered pairs of
vertices, we call G a digraph.

In this book, we will not in general deal with multigraphs or loops; that is,
there is at most one edge (z,y) in a graph, and there is no edge (x,z). Note that if
G is a digraph, there may be both an edge (z,y) and an edge (y,z).

Two vertices x,y of a graph are adjacent if they are connected by an edge. The
neighbors of x, sometimes denoted N(z), are the set y such that (z,y) € E.

The subgraph of G = (V,FE) induced by a set S of vertices is the graph H =
(S,Eg), where Ey is the set of edges of E such that both endpoints are in S.

We will refer to the number of vertices in a graph as n, and the number of
edges as m. We will assume that vertices of a graph are labeled as integers from 1
through n, unless noted otherwise.

If C is a class of graphs, the class of co-C graphs is defined to be those graphs
G such that the complement G of G is in C. The complement G of G has the same
vertex set as G, and z is adjacent to y in G if and only if 2 and y are nonadjacent
in G.

1.2 Algorithm Background and Terminology

This book is intended to be of interest to both mathematicians and computer
scientists. In most cases, algorithmic topics will be presented separately from other
representation issues, but there is one notational device from the world of computer
science which is absolutely essential. We will rely heavily on order notation, as
described below.

Order notation is a form of mathematical notation devised to ignore constant
factors, and preserve larger differences between functions. We will use the following
order notation symbols: O, o, €, ©, which respectively mean <, <, >, and =,
if constant factors are ignored. We give a formal definition of O below. f(n) is
O(g(n)) if f(n) is O(g(n)) and g(n) is O(f(n)). f(n) is o(g(n)) if f(n) is O(g(n)), but
g(n) is not O(f(n)). Finally, we use f(n) is 2(g(n)) to denote that g(n) is O(f(n)).

I should note that there are slight variants of definition in the literature. Using
the definitions below it is possible to have functions f(n) and g(n) such that f(n)
is not O(g(n)), and f(n) is not Q(g(n)); an example would be f(n) = n for even
values of n and n? for odd values of n, while g(n) = n? for even values of n and n
for odd values. This can be avoided by changing the definition of € to require that
f(n) > cg(n) infinitely often, and this usage is more meaningful in some contexts.
For example, I would argue that an algorithm which runs in n? time for odd n
and n time for even n should be called ©(n?), O(n?), and (n?), and for this the
definition of 2 using infinitely often is necessary. Although the best definitions are
debatable in general, there are no functions used in this book where the different
definitions affect any problems or algorithms. I use the definitions above so that the
reader who is unfamiliar with order notation can understand all other definitions
from the formal definition of O, which we give below.
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We say f(n) is O(g(n)) if there are constants ¢ and N such that for all n > N,
f(n) < cg(n).

Measures of time complexity in graph algorithms are based on the number of
vertices and the number of edges in the input graph. For graphs, we use the term
linear time to mean O(n+m) time; the term generally means time proportional to
the size of the input.

Some readers might notice that while we present upper bounds in the form of
algorithms with certain time complexities for solving problems, we never present
lower bounds which say that the problem requires a certain amount of time. There
is a good reason for this; we know next to nothing about proving nonlinear lower
bounds for practical problems, unless we place restrictions on the type of operation
which is allowed.

For example, the well known 2(nlogn) lower bound on sorting applies only if
we assume that the algorithm is restricted to using comparisons between elements
to get information on the ordering. Teaching this sorting lower bound may even
mislead some students into thinking that we can find proofs that our nonlinear
algorithms are optimal.

In my opinion, finding superlinear lower bounds for polynomially solvable prob-
lems with unrestricted operations allowed is one of the great challenges in computer
science. Thus, any nonlinear algorithm in the book is theoretically a candidate for
improvement.

Our only ‘lower bounds’ on polynomially solvable problems will be pointing out
when an improvement might be difficult to find, since it would improve the time
complexity of a problem which has been studied extensively. For example, we will
show that linear time algorithms for certain problems, including the recognition
problem for a number of graph classes, would imply linear time algorithms for
determining whether a graph has a triangle. This will not prove that a linear time
algorithm for these problems is impossible. However, since triangle-free graphs
have been studied extensively and no linear time algorithm for recognizing them
is known, it is useful to realize that it may be very difficult to find a linear time
algorithm for these problems.

Our other notion of a ‘lower bound’ is NP-completeness. Readers who want
more information on the subject of NP-completeness are advised to study [206]. A
decision (yes/no) problem is in P if it can be solved in polynomial time. A decision
problem is in NP if it can be solved in polynomial time by a nondeterministic
Turing machine; for such problems, you can give a polynomial length proof for any
yes instance of the problem. A problem is NP-complete if the problem is in NP, and
all problems in NP can be polynomially transformed into the problem. If a problem
is NP-complete, we can at least say that finding a polynomial time solution for the
problem would require a magnificent breakthrough in research.

Important NP-complete problems on graphs include the clique problem, the
chromatic number (coloring) problem, independent set, clique cover, Hamilton cy-
cle; many others can be found in [206]. We will define the problems which come
up repeatedly in the book at this point; many of these problems are tractable for
classes of graphs studied in the book. Other optimization problems will be defined
when they arise.

A clique C in a graph is a set of vertices such that each pair of vertices in C is
connected by an edge. The clique problem takes a graph G and an integer k, and
asks whether G contains a clique of size k. The maximum clique problem involves
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finding the size of a largest clique in the graph. A clique C is maximal if no vertex
can be added to C such that the resulting set is still a clique.

An independent set (also called a stable set) is the complement of a clique; that
is, every pair of vertices in the set must be nonadjacent. Maximum and maximal
independent sets are defined analogously to the definitions above.

A coloring of a graph is an assignment of numbers (called colors) to vertices
such that no pair of adjacent vertices is assigned the same color. The chromatic
number of G is the minimum number of colors used in any valid coloring of G'. The
coloring, or chromatic number problem, takes a graph G and an integer k£ and asks
whether G can be colored with at most k colors.

A clique cover of a graph is a partition of the vertices into subsets such that
each subset induces a clique. The clique cover number of a graph is the minimum
number of sets in such a partition.

A Hamilton cycle of a graph is a cycle which includes every vertex of the graph
exactly once.

We now must deal with one issue that can cause confusion, known as the
unit-cost assumption. In this assumption, standard operations such as addition,
multiplication, and finding the element at position ¢ in an array are assumed to
take constant time if the input numbers are of size O(n*), that is, the number
of bits in the input is O(logn). I will not discuss the reasoning behind the unit-
cost assumption; if we used different assumptions, our time bounds for standard
algorithms would differ from those used in the literature.

We bring up the unit-cost assumption here because we will not be using the
unit cost assumption with respect to space complexity. When we discuss a storage
mechanism for a class of graphs, we will be counting the number of bits in the
representation rather than the number of integers in the range 1..0(n). We must
count bits of space, since we are discussing what the limits are in a compact rep-
resentation of a graph. These limits come easily from the number of bits; any set
with 2/(") members must require a bit string of length f(n) if we require that each
member has a different name. However, if we did not count bits, it would not be
accurate to say that f(n) space was required; the precise amount of space would
depend on how many bits are allowed to be treated as a constant unit of space.

We still measure space complexity in terms of order notation, since this makes
our analysis much cleaner and clarifies a number of open problems. Note that it
might be more consistent to use bit complexity for measurements of time as well
as space. However, being forced to say (for example) that binary search runs in
O(logzn) time when all other sources use logn as the time bound would cause a
great deal of confusion, and I feel that this confusion outweighs the benefits of using
the same measurement system for time and space.

1.3 Representation Background

As a researcher in computer representation of graphs, the treatment in some
introductory discrete mathematics and data structures texts is particularly irritat-
ing. Most texts introduce the following two forms of graph representation, which
we will also use in this book.

The adjacency matrix A of a graph G is a matrix with n rows and n columns,
such that A[z,y] = 1 if and only if there is an edge from z to y. Adjacency matrices
may represent either directed graphs or undirected graphs.
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Adjacency lists store a graph by keeping a list of the neighbors of each vertex.
Generally, one stores these as an array of lists, so that one can have access to the
list of neighbors of ¢ in constant time. A graph is stored by storing the adjacency
lists of all vertices. In standard terminology, an adjacency list keeps an unordered
list of neighbors of each vertex; the lists can be sorted in linear time if desired
(exercise 1.1).

These definitions are presented adequately in most texts. However, the expla-

nation that goes with them is often faulty. Combining misstatements from several
texts, we get the following explanation.
Straw Man’s’ comments on graph representations: There are two methods for
representing a graph in a computer; adjacency matrices, and adjacency lists. It is
faster to work with adjacency matrices, but they use more space than adjacency
lists, so you will choose one or the other depending on which resource is more
important to you.

Of course, there are many interesting forms of graph representation; that is
one of the points of this book! The notion of time/space tradeoff between the
two forms of representation given is also very misleading, since there are problems
which can be provably solved faster on adjacency lists than adjacency matrices, and
the amount of space used to store a random graph is larger with adjacency lists
than with adjacency matrices. Let us look at the time/space tradeoff a bit more
carefully.

If all information about the input graph comes from queries of the form ‘is
there an edge between x and y?’, then adjacency matrices are clearly faster, since
a query can be answered in constant time, whereas this can involve traversing a
long list if adjacency lists are used. However, many algorithms use operations such
as ‘find a neighbor of x’ or ‘get the next neighbor of z’. These operations take
constant time if an adjacency list is used, but can take time proportional to n if
you are only given an adjacency matrix as input. Thus, most linear time solvable
problems on graphs, such as asking whether an input graph is bipartite, connected,
acyclic, ..., require (n?) time if input is in adjacency matrix form (exercise 1.4).

We mention in passing a well known theorem about time required to test prop-
erties if the input is in adjacency matrix form. A graph property is nontrivial if the
answer may be either yes or no, and monotone if adding edges to a graph which has
the property always produces a graph which has the property. Thus, for example,
connectivity is a monotone property, while properties such as being disconnected
or acyclic are not. Any nontrivial monotone property requires £2(n?) time to test
if the input is given in adjacency matrix form [409].

Before dealing with space complexity of the representations, we should let the
reader be aware of a well known (to people in the field) trick in graph represen-
tation which allows some problems to be solved in linear time. To the best of my
knowledge, this approach is first used in problem 2.12 of [11]. One might think
that any algorithm which uses adjacency matrices requires Q(n?) time, since the
matrix takes that much time to initialize. Exercise 1.2 shows that it is possible
to use the adjacency matrix effectively to test adjacency in constant time without
paying initialization costs. Exercise 1.3 gives a good example of the use of this rep-
resentation; it is easy to develop a linear time algorithm to recognize series-parallel

LA straw man is a rhetorical construction, in which you create a weak counter-argument to
your viewpoint, and proceed to knock it down.



10 1. Introduction

graphs if you know the representation trick, but if you do not know this technique
it is quite difficult. In fact, several journal papers and theses have been written
recognizing the class in linear time; these algorithms manage to solve the problem
using O(m-+n) space, but it is quite tricky to do so!

Now let us address space complexity of adjacency matrices and adjacency lists.
Adjacency matrices use the same amount of space for every graph. Although there
are slight variants which are useful for some applications, such as storing only
elements above the diagonal for undirected graphs, there are clearly O(n?) entries
in the matrix, and each entry is a single bit, so ©(n?) bits are used to store the
graph.

Adjacency lists will have a total of 2m entries for an undirected graph, since
each edge appears on two lists. Each entry holds a number in the range 1..n, and
thus takes logn bits, making the total space complexity ©(mlogn) bits.

The number of graphs on n vertices is 2*("~1)/2  since there are n(n-1)/2 pos-
sible edges and we can choose to include or exclude each edge. Thus, any form of
representation for the class of all graphs must use at least n(n-1)/2 bits; this result
holds for both the worst case and the average case. Since every form of represen-
tation must use Q(n?) bits, and adjacency matrices use O(n?) space, adjacency
matrices come within a constant factor of the minimum possible amount of space.
For the purposes of this book, if a set has 29(/(") elements, any representation
of members of the set which uses O(f(n)) bits will be called space optimal; adja-
cency matrices are a space optimal representation of graphs. On the other hand,
adjacency lists are not space optimal; they use ©(n%logn) bits on complete graphs,
since every entry uses logn bits. In fact, if all of the 27("~1)/2 graphs on n vertices
are considered equally likely, the average number of edges in a graph is n(n-1)/4,
and adjacency lists use ©(n%logn) bits in the average case as well. Thus, while ad-
jacency lists save space on sparse graphs, in our formal sense they use more space
than adjacency matrices.

Note that when we counted the number of graphs above, we did not deal
with the issue of counting isomorphic copies of the same graph multiple times.
Technically, this is unnecessary, since by definition we are discussing labeled graphs;
thus isomorphic copies are considered to be different graphs. This argument, like
many arguments in this book, can be modified to apply to unlabeled graphs with
only minor changes. There are at most n! isomorphic copies of an unlabeled graph;
thus, the number of unlabeled graphs on n vertices is at least 27(7—1)/2 /n!, which
is 22n*) In general, as long as a graph class has at least 2(1+9)"°9” members, a
space optimal representation for a class of labeled graphs is also space optimal for
the corresponding class of unlabeled graphs.

Many modifications of general adjacency list or adjacency matrix representation
have been proposed. Dahlhaus, Gustedt, and McConnell [146] have introduced the
notion of a ‘partially complemented’ representation of a graph, which can save
space for representing many graphs. In this form of representation, there is a list
associated with each vertex, and a special bit which indicates whether this list is
of the neighbors of the vertex or the nonneighbors of the vertex. They use this
to show that many operations on a graph can be solved in time which is linear
in the partially complemented representation. For example, the fact that you can
perform depth first search and breadth first search in linear time with respect to
the partially complemented representation means that you can determine whether



