Proceedings

KLAUS DITTRICH AND
UMESHWAR DAYAL, EDITORS

Sponsored by: ACM Special interest Group on Management of Data
IEEE CS Technical Committee on Database Engineering

In cooperation with: Gesellschaft fur Informatik, West Germany
FZ1, University of Karlsruhe, West Germany
1IMAS, Mexico

IEEE Computer Society Order Number 734
Library of Congress Number 86-45866
IEEE Catalog Number 86TH0161-0
ISBN 0-8186-0734-3

ACM Order Number 472861

SEPTEMBER 23-26, 1986
ASILOMAR CONFERENCE CENTER
PACIFIC GROVE, CALIFORNIA

@ Association for Computing Machinery

COMPUTER
SOCIETY ¢y
PRESS @

@ THE COMPUTER SOCIETY
e _v

OF THE IEEE IEEE THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, INC.

Proceedings

1986

International Workshop
on Object-Oriented
Database Systems

KLAUS DITTRICH AND
UMESHWAR DAYAL, EDITORS

Sponsored by: ACM Special Interest Group on Management of Data
IEEE CS Technical Committee on Database Engineering

In cooperation with: Gesellschaft fur Informatik, West Germany
FZI, University of Karlsruhe, West Germany
1IMAS, Mexico

1IEEE Computer Society Order Number 734
Library of Congress Number 86-45866
IEEE Catalog Number 86TH0161-0

ISBN 0-8186-0734-3

ACM Order Number 472861

SEPTEMBER 23-26, 1986
ASILOMAR CONFERENCE CENTER
PACIFIC GROVE, CALIFORNIA

@ Association for Computing Machinery

TER SOCIETY @ ‘Sé‘gg:g#’;ﬂzn
THE COMPU IE . S St PRESS)

OF THE IEEE IEEE THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, INC.

Published by IEEE Computer Society Press
1730 Massachusetts Avenue, NW.
Washington, D.C. 20036-1903

COVER DESIGNED BY JACK |. BALLESTERO

IEEE Computer Society Order Number 734
Library of Congress Number 86-45866
IEEE Catalog Number 86TH0161-0
ISBN 0-8186-0734-3 (paper)

ISBN 0-8186-4734-5 (microfiche)
ISBN 0-8186-8734-7 (case)

ACM Order Number 472861

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are
permitted to photocopy beyond the limits of U.S. copyright law for private use of patrons those
articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee
indicated in the code is paid through the Copyright Clearance Center, 29 Congress Street, Salem, MA
01970. Instructors are permitted to photocopy isolated articles for noncommercial classroom use
without fee. For other copying, reprint or republication permission, write to Director, Publishing serv-
‘ices, |IEEE, 345 E. 47 St., New York, NY 10017. All rights reserved. Copyright © 1986 by The Institute
of Electrical and Electronics Engineers, Inc.

Prices (1986) ACM or IEEE members: $22.50
All others: $45.00 prepaid

Order from: |IEEE Computer Society IEEE Service Center ACM
Post Office Box 80452 44 Hoes Lane Order Department
Worldway Postal Center Piscataway, NJ 08854 Post Office Box 64145
Los Angeles, CA 90080 Baltimore, MD 21264
@) 1eex computer sociery BSSIVESSESh. BCM Assciation for Computing Machinery

ii

Workshop Committee

PROGRAM COMMITTEE
Klaus Dittrich, FZI, University of Karlsruhe, Germany - Chairman
Umeshwar Dayal, Computer Corporation of America - Co-Chairman

Don Batory, University of Texas

Alex Buchmann, IIMAS, University of Mexico, Mexico
Mark Haynie, Instrumental Software

Dennis McLeod, University of Southern California

CONFERENCE TREASURER
Dennis MclLeod

LOCAL ARRANGEMENTS
Mark Haynie

Table of Contents

Workshop Commiittee. i i

Opening Remarks

Object-Oriented Database Systems: The Notion andthe Issues 2
K.R. Dittrich

Session 1: Data Models and Constraints
A Data Modeling Methodology for the Design and Implementation of

Information SysStemst e 6
P. Lyngbaek and W. Kent

PDM: An Object-Oriented DataModel 18
F. Manola and U. Dayal

CACTIS: A Database System for Specifying Functionally-Defined Data 26

S.E. Hudson and R. King

A Generalized Constraint and Exception Handler for an Object-Oriented

CAD-DBMS. . .. e 38
A.P. Buchmann, R.S. Carrera, and M.A. Vazquez-Galindo

Session 2: Tools and Proposed Systems

The Architecture of the EXODUS Extensible DBMS 52
M.J. Carey, D.J. DeWitt, D. Frank, G. Graefe, M. Muralikrishna,
J.E. Richardson, and E.J. Shekita

Object Management in POSTGRES Using Procedures 66
M. Stonebraker

The Data Model Compiler: A Tool for Generating Object-Oriented

Database SysStems.t . 73
F. Maryanski, J. Bedell, S. Hoelscher, S. Hong, L. McDonald,
J. Peckham, and D. Stock

Extensibility in the Starburst Database System 85
P. Schwarz, W. Chang, J.C. Freytag, G. Lohman, J. McPherson,
C.Mohan, and H. Pirahesh

Session 3: Languages and Interfaces
A Strongly Typed, Interactive Object-Oriented Database Programming

LANQUAGE « v scmussas snmmmuss ssmuanas s apasuss cnmmaes s iHasis s ERFRFERS SEEBAHTES ¥ b 94
A. Albano, G. Ghelli, M.E. Occhiuto, and R. Orsini

Towards an Object-Centered Database Languageccoinn.... 104
M.L. Kersten and F.H. Schippers

Persistent and Shared Objects in Trellis/Owl 113

P. O'Brien, B. Bullis, and C. Schaffert
How Helpful Is an Object-Oriented Language for an Object-Oriented

Database Model?. 124
O. De Troyer, J. Keustermans, and R. Meersman
PROTEUS: Objectifying the DBMS User Interface 133

T.L. Anderson, E.F. Ecklund, Jr., and D. Maier

v

Session 4: Physical Aspects
Persistent Memory: A Storage Architecture for Object-Oriented Database

v (=) 1 - A T PR T T I T T 148
S.M. Thatte

A Shared Object Hierarchy. e 160
L.A. Rowe

Indexing in an Object-Oriented DBMS i 171
D. Maier and J. Stein

A Storage System for Complex Objects. i 183
U. Deppisch, H.-B. Paul, and H.-J. Schek

An Object Server for an Object-Oriented Database System. 196

A.H. Skarra, S.B. Zdonik, and S.P. Reiss

Position Statements

A Strongly Typed Persistent ObjectStore oo it 206
M.P. Atkinson, A. Dearle, and R. Morrison
GENESIS: A Project to Develop an Extensible Database Management

RS 31 (= 1 207
D.S. Batory

Sharing of Objects in an Object-Oriented Languaget 209
A.-J. Berre

Storage Reclamation for Object-Oriented Database Systems: A Summary

ofthe Expected CostS.ot e e 210
M.H. Butler

Combining Object-Oriented and Relational Modelsof Data........................ 212
R.G.G. Cattell and T.R. Rogers

Identity and Versions for ComplexObjects i 214
G.P. Copeland and S.N. Khoshafian

The Use of Object-Oriented Databases to Model Engineering Systems 215
C.M. Eastman

New Approaches to Object Processing in Engineering Databases.................. 217
T. Harder

An Object-Oriented Data Model for the Research Laboratory 218
P. Kachhwaha and R. Hogan

Inheritance Semantics for Computer-Aided Design Databases..................... 219
R.H. Katz

Unifying Database and Programming Language Concepts Using the

ObjeCt MOdel . ..o e e 221
A.M. Keller

Object-Oriented Data Models and Management of CAD Databases 223
M.A. Ketabchi

Communicating Recursive Objects.o 225
W. Lamersdorf

Why Object-Oriented Databases Can Succeed Where Others Have Failed 227
D. Maier

Object Management and Sharing in Autonomous, Distributed Databases 228
D. McLeod

Transaction Management for Object-Oriented Systems 229
J.E.B. Moss

Re-creation and Evolution in a Programming Environment 230

J.R. Nestor

vi

OBJECt MOABIING < < .« & sxmsas s csmmmns s srmmuns s ewmunas s smsnst s € easmnressrismpmns 231
S. Osborn

An Object-Oriented Framework for Modeling DesignData. 232
K.V. Bapa Rao

An Object-Oriented Data Management System for Mechanical CAD................ 233
D.L. Spooner

The GRASPIN DB—A Syntax Directed, Language Independent Software

Engineering Database i 235
C. Zaroliagis, P. Soupos, S. Goutas, and D. Christodoulakis

AUTNOr INAeX. e e e e 237

vii

Opening Remarks

Object-oriented Database Systems: the Notion and the Issues
(extended abstract)

Klaus R. Dittrich

Forschungszentrum Informatik (FZI) an der Universitit Karlsruhe
Haid - und - Neu - Str. 10-14, D-7500 Karlsruhe

A database system is a collection of stored
data together with their description (the da-
tabase) and a hardware/software system for
their reliable and secure management, modif-
ication and retrieval (the database manage-
ment system, DBMS).

A database is supposed to represent the in-
teresting semantics of an application (the
miniworld) as completely and accurately as
possible. The data model incorporated into a
database system defines a framework of con-
cepts that can be used to express the
miniworld semantics.

It comprises

® basic data types and constructors for

composed data types,

® (generic) operators to insert, manipulate,
retrieve and delete instances of the actu-
al data types of a database,

® implicit consistency constraints as well
as (eventually) mechanisms for the de-
finition of explicit consistency con-
straints that further reflect the
miniworld semantics as viewed by the
database system.

As usual, types have to be defined before in-
stances of them can be created (the collection
of defined types — sometimes together with
the set of explicit consistency constraints —
forms the database schema). Every data-
base thus adheres to the schema defined for
it, and both together, the schema and the ac-
tual data provided by the users (and stored

THO0161-0/86/0000/0002$01.00 © 1986 IEEE

in instances) capture the miniworld seman-
tics.

We can therefore distinguish the following
two classes of semantics:

® the semantics of the miniworld itself,

® the semantics of the miniworld as
represented within the database.

Let us assume that a database correctly re-
flects the intended miniworld semantics (care-
ful database design!). Due to the rigid
framework of data models, there will still
remain a semantic gap between the
miniworld and its database representation.
In other words, it is usually impossible to
represent all interesting semantics within a
database. The “remainder” has to be cap-
tured by the application programs using the
database and/or it is part of the (hopefully
meaningful !) interpretation of the result of
database queries by the user himself.

However, the ultimate goal of database sys-
tems is to provide for concepts that allow to
keep the semantic gap as small as possible
and thus permit to represent most of the
salient semantics in the database itself.

What are object-oriented database sys-
tems ?

This is where object-oriented database sys-
tems come in. On a level of abstractions, the
semantics of a given miniworld may be
modelled as a set of entities and relationships
amongst them. While classical business/ad-
ministration types of database applications
tend to deal with rather “simple” entities (i.e.
those where only a few properties like name,
age, salary are of interest), this is no longer
true for applications like VLSI-design, image
processing, office automation and the like. In
these areas, entities usually show very com-
plex internal structures and may comprise
larger numbers of (possibly substructured)
properties. Similar observation can be made
with respect to relationships.

Today’s database systems are mostly based
upon one of the now classical data models
(hierachical, network, or relational) or one of
their derivations. As these models are all
tailored to account for the representation of
rather simple entities only, the semantic gap
tends to become large when complex entities
need to be dealt with. This is at least par-
tially due to the fact that in these cases one
conceptual miniworld entity has to be
represented by a number of database objects
(e.g. records, tuples, ...).

This leads us to a first-cut informal defini-
tion of an object-oriented database system: it
is based on a data model that allows to
represent one miniworld entity (whatever its
complexity and structure) by ezactly one o0b-
Ject (in terms of the data model concepts) of
the database. Thus no artificial decomposi-
tion into simpler concepts is necessary in any
case Sun]ess the database designer decides to
do so). Note that as entities might be com-
posed of subentities which are entities in their
own right, an object-oriented data model also
has to allow for recursively composed ob-
jects.

Looking at things a little closer, we can in
fact identify several levels of object-
orientation:

(a) if the data model allows to define data
structures to represent entities of any
complexity, we call it structurally

object-oriented (i.e. there are complex
objects),

(b) if the data model includes (generic)
operators to deal with complex objects
in their entirety (in contrast to being
forced to decompose the necessary
operations into a series of simple object
— e.g. tuple or homogeneous set of tu-
ples — operations), we call it operation-
ally object-oriented; as it is hardly
meaningful without, we require that

operational object-orientation includes
structural object-orientation;
(c) borrowing types from the object-

oriented programming paradigm, a data
model may also incorporate features to
define object types (again of any com-
plexity) together with a set of specific
operators (abstract data types); in-
stances can then only be used by calling
these operators, their internal structure
may only be exploited by the operator
implementations; we call systems based
on this approach behavioralley object-
ortented.

While structural object-orientation is not
very useful without operational object-
orientation, both (b) and (c) are within the
range of object-oriented database systems;
note that the scope is thus broader than with
object-oriented programming languages
which are concentrated on the paradigm
sketched in (c) only. However, there seems
to be agreement that even the (somewhat less
advanced) operational object-orientation is a
versatile solution for database systems (and
might at least be used as a basis for the
internals of abstract data types in (c)). By
the way, concepts like property inheritance
may be added to both (b) and (c).

There are at least two other directions where
the notion of object-orientation is used; in
our opinion, they do not contribute to the de-
finition of object-oriented database systems,
but naturally come along with such systems.

® object-oriented implementation : the
(database) system as a piece of software
is constructed as a set of abstract data
type instances, i.e. a specific kind of
modularization is applied, even non-
object-oriented database systems may
have an object-oriented implementation;

® object-oriented wuser/programming in-
terface : the database system interface is
presented to the user/application pro-
grammer in a fashion inspired by the
object - oriented proramming paradigm;
while this fits in very smoothly with an
object - oriented database system (expe-
cially of type (c)), it may also be pro-
vided on top of any other database sys-
tem.

What are the issues of object-oriented
database systems ?

At first glance, one might think that object-
oriented database systems just offer a dif-
ferent kind of data model than traditional
systems do. However, the more powerful
concepts for modelling miniworld semantics
result in a number of database issue to be at
least reconsidered, if not extended or com-
pletely changed. The following list mentions
a few of them in random order:

® Like various record-/tuple-oriented data
models, many object-oriented data
models have been and will be proposed.
Some of these differ only slightly in
style and/or expressive power, and there
is currently no clear tendency towards
one or a small number of generally
“recognized” models.

® Together with complex objects, applica-
tions are often concerned with object
versions (multiple representations of the

same semantic entity, to account for dif-
ferent stages, different times of validity,
alternative or hypothetical information
etc.). Object-oriented database systems
therefore need mechanisms to deal with
versions.

When manipulating objects comprising
large bulks of data, transactions may
become much longer than usual. New
concepts are therefore needed to accom-
modate long-duration transactions, and
in addition the concepts for recovery and
consistency control and their relationship
to the transaction concept have to be
reconsidered.

Protection mechanisms have to be based
on the notion of object which is the na-
tural unit of access control in this
framework.

For databases containing large numbers
of data, archiving may become a major
issue. Again, objects (and their versions,
if any) form the natural unit for this ac-
tivity.

To work with an object-oriented data-

base offen consists of first selecting one

or a small number of objects and then
performing local operations on them for

a while. This suggests to provide, among

others,

— specialized access paths for complex
objcts,

— specialized storage structures for
complex objects (that e.g. physically
cluster logical objects or that use
delta storage for versions),

— object-oriented main memory
buffering

in the implementation of an object-

oriented database system.

High quality database design is a tedious

job even for record-oriented database

systems. It appears that it is even more
difficult within the framework of
object-oriented database systems. Ap-
propriate design methodologies and tools
that support them have to be developed.

Session 1: Data Models and Constraints

A DATA MODELING METHODOLOGY FOR THE DESIGN
AND IMPLEMENTATION OF INFORMATION SYSTEMS

Peter Lyngbaek and William Kent

Hewlett-Packard Laboratories
1501 Page Mill Road, Palo Alto, California 94304

ABSTRACT

Formal specifications that precisely and correctly define
the semantics of software systems become increasingly im-
portant as the complexity of such systems increase. The
emerging set of semantic data models which support both
structural and operational abstractions are excellent tools
for formal specifications. In this paper we introduce a
methodology, based on an object-oriented data model, for
the design and development of large software systems. The
methodology is demonstrated by applying the object-
oriented data model to the specification of a database sys-
tem which implements the given model. The specification
serves several purposes: it formally defines the precise se-
mantics of the operations of the data model, it provides a
basis from which the corresponding database system soft-
ware can be systematically derived, and it tests and demon-
strates the adequacy of such a model for defining software
systems in general. The design methodology introduced
combines techniques from data modeling, formal specifica-
tions, and software engineering.

1 Introduction

The importance of formal semantics definitions of large,
complex software systems has been widely recognized over
the past years. A formal semantics definition is a precise
specification of the semantics of a given system. It serves
as a basis for the development of implementations of the
system and can be used to verify correctness of the im-
plementations. A formal definition can be thought of as a
contract between users and developers of the system being
defined.

Operational and denotational semantics*16 have been dem-
onstrated to be useful tools for programming language de-
sign and compiler developments®®14 and there is a growing
acceptance of such techniques for data model and database
system designs®. A formal definition of a database system
expresses the semantics of the database operations and it
may be used by the implementors of the database system,
technical manual writers, database designers and database
end-users.

THO0161-0/86/0000/0006$01.00 © 1986 IEEE

Data models are becoming increasingly powerful. Their
semantic expressiveness and high levels of data abstrac-
tions make the differences between semantic data mod-
els1%2417:.25 and modern object-oriented programming lan-
guages!® vanish. Data models that support both static
(structural) and dynamic (operational) modeling constr-
ucts can be used as formal specification tools suitable for
semantics definitions of complex software systems such as
information systems.

In this paper, we show how to use an object-oriented data
model as a tool for specifying large software systems. The
approach, which supports a data-driven methodology for
the design and development of software systems, is an ex-
tension of the fact-based data analysis and design described
in [19]. The methodology is demonstrated by defining an
object-oriented database system in terms of the data model
it implements. The static modeling constructs of the data
model, e.g., objects, types, and relationships, can be used
to define the semantic domains of the corresponding infor-
mation system. The dynamic modeling constructs, e.g., the
database operations, can be used to define the semantics of
the operations of the information system. The definition
is based on a procedural programming language similar to
the ones a database designer might use for writing database
operations.

The advantages of using a data model as a tool for the
definition of its own semantics are twofold. Firstly, a user
of the formal definition only has to deal with one formal-
ism, namely the data model itself. An application devel-
oper learns the capabilities of the database system in the
same formalism he will use to define his own applications.
An understanding of the data model is required anyway by
the system implementors, manual writers, database design-
ers, and database users in order for them to do their jobs.
The fact that the user of the formal definition does not
have to understand an additional specification language is
an important one because the major objections to formal
specification languages are their complexity and difficulty
of use and understanding. The second reason for using a
data model as a formal specification tool is to demonstrate
the power of the model. This is similar to implementing
a compiler for a given programming language in its own
language.

To a limited extent, data models have previously been used
to specify themselves. Meta-data that describe the struc-
ture of a database can be modeled by the same model as
the one used to model the content of the database. Various
implementations of the relational model, for example, store
the meta-data in pre-defined relations®??. These relations,
often called the system tables, describe all the relations of a
database, including themselves, by their names, attributes,
access rights, and so on. A number of semantic data models
have also been used to describe their own meta-datal®"22,
In the object-oriented data model supported by the Per-
sonal Data Manager??, for example, a type is modeled as an
object with pre-defined attributes such as Name, Instances,
Supertype, and Subtypes. Self-describing database sys-
tems?® introduce an intension-extension dimension of data
description which allows changes of user-data explicitly to
be controlled in the corresponding schema. That way, the
same data manipulation language can be used to manipu-
late both meta-data and user-data.

Even though it has been successfully demonstrated that the
structure of a database can be defined in terms of its own
structural modeling constructs, little work has been done to
demonstrate how the semantics of the data definition and
manipulation operations of a database system can be de-
fined in terms of the primitive operations of the database
system. In [6], it is shown how the structure of an IMS
database as well as the semantics of the IMS database com-
mands can be modeled using the VDL notation?. The goal
of this paper is to illustrate the same thing for an object-
oriented database system, but instead of using VDL as a
formal specification language we will use the structural and
operational modeling constructs of the underlying object-
oriented data model.

The rest of this paper is organized as follows. Section 2 de-
scribes the object-oriented data model, called the Iris Data
Model, which provides the framework for the formal specifi-
cation methodology. Section 3 outlines the design method-
ology and illustrates how it can be applied to the specifi-
cation of the Iris database management system!®. Finally,
Section 4 contains some concluding remarks.

2 Iris Data Model Overview

The notion of object or entity is central to most semantic
data models!®2417:25 QObject-oriented data models intro-
duce a semantically rich set of structuring primitives that
support abstractions such as classification, generalization/
specialization, and aggregation®®. Objects, which repre-
sent things or concepts from an application environment,
are unique entities in the database with their own identity
and existence. They can be referred to regardless of their
attribute values. Therefore, referential integrity!! can be
supported. This is a major advantage over record-oriented
data models in which the objects, represented as records,
can be referred to only in terms of their attribute values.

Semantic models that support the modeling of database
operations, i.e., procedural abstractions?4%2112 introduce a
high degree of data independence. In such models, objects
are described - not by their looks - but by their behavior.
Objects can only be accessed and manipulated in terms of

pre-defined operations and functions.

The Iris Data Model falls into the general category of se-
mantic data models. The roots of the model can be found
in previous work on Daplex? and its extensions?® and the
Taxis language??. A subset of the Iris model, which is cur-
rently being implemented at Hewlett-Packard Laboratories,
is briefly described below. It is beyond the scope of this
paper to further compare the model with related work on
semantic data modeling.

2.1 Objects, Types, and Functions

The data model is based on objects, types, and functions.
Objects have the following characteristics:

1. Objects are classified by types. Objects that share
common properties belong to the same type.

2. Objects may serve as arguments to functions and
may be returned as results of functions.

The model distinguishes between literal objects and non-
literal objects. Literal objects include Integer, Real,
Boolean, and String objects. They are directly repre-
sentable. Literal objects are system-defined and are al-
ways known to the database. Le., there are no operations
to explicitly create or destroy them. Non-literal objects
are not directly representable in external form. Internally,
non-literal objects are represented by surrogates which are
unique object identifiers.

The database operation NewObject introduces a new ob-
ject and adds it to the extension of a specified user-defined
type and all its supertypes. The database operation Dele-
teObject deletes a specified user-defined object from the
database.

Types, which have unique names, are organized in a type
structure that supports generalization and specialization.
A given type may have multiple subtypes and multiple su-
pertypes. An object that belongs to a given type also be-
longs to the type’s supertypes. The type Object is the
supertype of all other types and therefore contains every
object. Types are objects themselves, and their relation-
ships to subtypes, supertypes, and instances are expressed
as functions in the system!®.

For each type in the database there is an associated predi-
cate function, called a typing function, which has the same
name as the type. The typing function maps objects onto
the Boolean objects True and False. A given object is
mapped to True if it is an instance of the type with which
the typing function is associated; otherwise it is mapped to
False.

The database operation NewType introduces a new type of
a specified name as a subtype of specified supertypes. An
existing user-defined type is deleted from the database by
the database operation Delete Type. The operation AddIn-
stance adds a specified user-defined object to the extension
of a specified user-defined type and all its supertypes. A
user-defined object is removed from the extension of a spec-
ified user-defined type and all its subtypes by the database
operation Removelnstance.

Properties of objects are expressed in terms of (possibly
multi-valued) functions, which are defined over types. For
example, DepartmentOf is a function defined on Employee
objects:

Department0Of: Employee -> Department

DepartmentOf(Smith) will return the department to which
Smith is assigned, e.g., Sales.

A type can be characterized by the collection of functions
defined on it. The Employee type might have the func-
tions EmployeeNumber, Name, DepartmentOf, Salary, and
Birthdate defined over it:

EmployeeNumber: Employee -> Integer
Name: Employee -> String
Department0f: Employee -> Department
Salary: Employee -> Real

Birthdate: Employee -> Date

Functions can also express properties of several objects. For
example, the function AssignmentDate defined on employ-
ees and departments will return the date an employee of a
given department was assigned to that department:

AssignmentDate: Employee x Department ->

Date

If Smith was assigned to the Sales department on 1/1/84
then

AssignmentDate (Smith, Sales) = 1/1/84

Functions may have complex property values. The func-
tion AssignedOn defined on Date objects returns pairs of
Employee and Department objects:

AssignedOn: Date -> Employee x Department

If two assignments were made on 6/1/82, e.g., Wong was
assigned to the Research department and Jones to the Mar-
keting department then

AssignedOn(6/1/82) =
[(Wong. Research), (Jones, Marketing)]

The AssignedOn function illustrates a multi-valued func-
tion.

A function is defined not only on the types explicitly men-
tioned in the function definition, but also on the subtypes
of those types. This is referred to as inheritance. For exam-
ple, if the type Engineer is a subtype of Employee then the
functions EmployeeNumber, Name, DepartmentOf, Salary,
and Birthdate are automatically defined on the Engineer

type.

The database operation NewFunction introduces a new
function and the operation Delete Function deletes a speci-
fied function from the database.

2.2 Database Updates and Queries

Properties of objects can be modified by changing the values
of functions, e.g.,

Set Salary(Smith) = $30000.00

The values of multi-valued functions can also be modified
by Add and Remove operations.

The database can be queried by specifying predicates on ob-
jects and function values. The following operation retrieves
all the employees assigned to Sales on 3/1/83:

FIND e/Employee
WHERE AssignmentDate(e, Sales) = 3/1/83

and the operation

FIND d/Department
FOR SOME e/Employee
WHERE AssignmentDate(e, d) = 3/1/83

returns all the departments to which employees were as-
signed on 3/1/83.

A FIND operation without a list of return variables returns
a Boolean value. The value returned is True if there exists
a binding of the existentially quantified variables such that
the Boolean expression is True. For example, the FIND
operation

FIND FOR SOME d/Department
WHERE DepartmentOf (Jones) = d

returns the value True if Jones is assigned to a department.
If Jones is not employeed by any department the value False
is returned.

2.3 Function Interdependence

Some functions are semantically interdependent, in the
sense that an update to one should be reflected by a change
in the other. Inverse functions constitute the most common
example. Consider the properties of a department:

Name: Department -> String
Manager: Department -> Employee
Employees: Department -> Employee

At present, we expect the value of Employees(Sales) to in-
clude Smith. But suppose we perform the update

Set DepartmentOf (Smith) = Purchasing

Such an update should automatically update the Employees
function so that Smith will appear among the employees of
Purchasing rather than Sales.

Sometimes more than two functions are so inter-related.
All of the following functions are semantically interrelated:

AssignmentDate:
Date
AssignedOn:
DeptHist:
EmpHist:

Employee x Department ->

Date -> Employee x Department
Department -> Employee x Date
Employee -> Department x Date

The function DeptHist returns for a given department its
past and current employees and their assignment dates.
Similarly, EmpHist returns for a given employee his em-
ployment history.

The interdependence among such functions is expressed by
deriving them from a common underlying base predicate.
Predicates are Boolean-valued functions that express re-
lationships among the objects involved. For example, an
Assignment predicate expresses a relationship among em-
ployees, departments, and dates.

Assignment:
.Employee x Department x Date -> Boolean

If Smith was assigned to the Sales department on 1/1/84
then

Assignment (Smith, Sales, 1/1/84) = True

The functions AssignmentDate, AssignedOn, EmpHist, and
DeptHist can then be defined by the following derivations:

AssignmentDate(e, d) ::=
FIND date/Date
WHERE Assignment(e, d, date)

AssignedOn(date) ::=
FIND e/Employee, d/Department
WHERE Assignment(e, d, date)

DeptHist(d) ::=.
FIND e/Employee, date/Date
WHERE Assignment(e, d, date)

EmpHist(e) ::=
FIND d/Department, date/Date
WHERE Assignment(e, d, date)

In effect, an update to one of these functions implies an up-
date to the underlying predicate, which in turn propagates
into all the other functions derived from that predicate.
Notice that a function derivation provides a definition for
a function previously introduced by a NewFunction opera-
tion.

The functions DepartmentOf and Employees are also se-
mantically related to Assignment. It is fairly easy to see
how the functions DepartmentOf and Employees can be
derived from the predicate

CurrentAssignment:
Employee x Department -> Boolean

which relates employees to their current departments. Cur-
rent Assignment can be derived from the base predicate As-
signment by the following derivation:

CurrentAssignment(e, d) ::=
FIND WHERE FOR SOME datel/Date
(Assignment(e, d, datel) AND NOT
FOR SOME date2/Date, d1/Department
(Assignment(e, di, date2) AND
date2 > datel))

2.4 Object Participation Constraints

Functions of one argument are generally characterized as
being either single-valued or multi-valued, and either re-
quired or optional. ”Participations” express such con-
straints in a more generalized fashion, applicable to func-
tions of multiple arguments, including predicates. In the
future, participations will also be specifiable for sets of ar-
gument positions, expressing constraints on combinations
of argument values.

Functions have specifications for each of their argument
and result parameters which indicates a minimum object
participation (MINP) and a maximum object participation
(MAXP). The object participation specifications, which are
required by every Iris function, are constraints. As an ex-
ample, consider the CurrentAssignment predicate in which
both MINP and MAXP of Employee objects are one, and
MINP and MAXP of Department objects are zero and
many, respectively:

CurrentAssignment:
Employee [1,1] x Department [0,m] -> Boolean
ab cd

(a) Each employee must participate at least once (MINP
= 1), i.e., each employee must have a department.

(b) Each employee may participate at most once (MAXP
= 1), i.e., each employee must have a department.

It is useful to note that any parameter having MAXP = 1
can serve as a unique key in the underlying tables in which
the data is stored. This applies to employees in this case,
since no employee can occur here more than once.

(c) A department need not participate at all (MINP = 0),
i.e., a department may have no employees.

(d) A department may participate many times (MAXP =
m), i.e., a department may have many employees.

The minimum and maximum object participation constr-
aints for a base predicate implicitly determine the object
participation constraints for all the derived functions whose
derivations depend on the predicate.

For ordinary functions of one argument, participations cor-
respond to simpler constraints. Consider the Department-
Of function:

DepartmentOf :
Employee [1,1] -> Department [O,m]
ab

(a) Each employee must participate at least once (MINP
= 1), hence this function is "required”. An argument
with MINP = 0 would indicate an optional function.

(b) Each employee may participate at most once (MAXP
= 1), hence this function is single-valued. An argu-
ment with MAXP = m would indicate a multi-valued
function.

2.5 Database Design Operations

A particular implementation of the Iris data model may
support a number of database design operations which al-
low physical storage structures and access methods for func-
tions to be defined. The Iris prototype currently being de-
veloped supports two database design operations, Store and
Indez, described below.

2.5.1 Store

The Store operation specifies how to materialize one or
more predicate functions. Store implements base predi-
cate functions using tables, i.e., the graphs of the functions
are stored in tables. That way, the database operations
Set, Add, Remove, and Find are mapped by the database
system to table operations.

In order to illustrate the Store operation, consider the three
predicates

Employee: Object [1,1] -> Boolean
Project:

Employee [0,1] x Project [0,m] -> Boolean
Manager:

Subordinate/Employee [0,1] x
Supervisor/Employee [0,m] -> Boolean

The operation

Store Project

causes a single table to be created and used to materialize
the Project predicate function. The table has one column
for each of the argument parameters Employee and Project.
The table will only contain employees who are assigned to
projects and projects to which employees are assigned.

If several predicates are specified by the same Store oper-
ation, they will all be clustered together in a single table.
The operation

Store Project ON Employee, Manager ON
Subordinate
causes the two predicates Project and Manager to be im-

plemented using the same table. The table has a single
column, called the clustering column, which is shared by

the parameters Employee of Project and Subordinate of
Manager. These parameters, called the clustering param-
eters, are specified by the ON clauses of the Store oper-
ation. All the clustering parameters must have the same
object type and they must be ”keys”, i.e., their upper ob-
ject participation must be one. In addition to the clustering
column, the table has one column corresponding to each of
the other parameters of the specified predicates. The clus-
tering column will only contain employees who are assigned
to projects or have managers. If an employee is assigned to
a project, but has no manager, the manager value will be
null. Correspondingly, if an employee has a manager, but
is not assigned to a project, the project value will be null.

It is possible to cluster the typing function of a given type
with other predicates if the type coincides with the cluster-
ing parameters. Thus, the operation

Store Employee, Project ON Employee, Manager
ON Subordinate

causes the instances of the Employee type, the Project pred-
icate, and the Manager predicate to be stored together in
the same table. The table has three columns, one corre-
sponding to Employee objects, one to Project objects, and
one to Supervisor (also Employee) objects. Now the clus-
tering column will contain all employees, with unassigned
employees having a null project and a null supervisor.

When a function stored with an ON clause is a unary pred-
icate, a column is generated to contain the Boolean value
of the predicate. Consider, for example, the predicate

Exempt: Employee [1,1] -> Boolean

The following Store operation will create a table with two
columns:

Store Employee, Exempt ON Employee

The clustering column is of type Employee. The other col-
umn, which corresponds to the predicate Exempt, is of type
Boolean.

2.5.2 Index

The Index operation creates search indexes for the tables
created by the Store operation. The operation

Index Project ON Employee

causes an index to be created for the table used to imple-
ment the Project predicate. The index is defined on the
column which corresponds to the Employee parameter of
Project.

2.6 Modularization

The full Iris Data Model will eventually support a mod-
ularization mechanism that allows related functions to be
grouped together in modules. Functions visible within a
module can then be specified to be invisible outside the
module or visible only in certain other modules. That way,

