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VORWORT

Die 3. GI-Fachtagung Theoretische Informatik setzt die Reihe der Vor-
gidngertagungen liber Automatentheorie und Formale Sprachen fort. Wie
an den hier zusammengefaflten Berichten erkennbar ist, ist mit der
Namensidnderung eine gewisse Ausweitung der Themenkreise verbunden.
Hier sind als Beispiel die Arbeiten iber die Deadlock-Problematik zu
nennen. Die Arbeiten lassen ferner die derzeitigen Schwerpunkte der
Forschung auf dem Gebiet der Theoretischen Informatik erkennen. Der
Tagungsband faflt die Vortrédge zusammen, die auf der dritten Fachtagung
vom 28. - 30. Mirz 1977 an der Technischen Hochschule Darmstadt ge-
halten werden. Da wie schon bei den Vorgingertagungen an der Form der
Tagung ohne Parallelsitzungen festgehalten wurde, muf3te aus der er-
freulich groflen Anzahl von Anmeldungen eine Auswahl getroffen werden,
die dem Programmkomitee in vielen Fdllen schwergefallen ist.

An dieser Stelle danken die Veranstalter den Vortragenden, Teilnehmern,
lHelfern und allen, die zum Gelingen der Tagung beigetragen haben,
herzlich. Das Bundesministerium fir Forschung und Technologie hat
durch seine finanzielle F6rderung die Durchfiihrung der Tagung ermdg-
licht. Fir grofiziigige Unterstiitzung danken wir der Technischen Hoch-
schule Darmstadt und den Spendern aus der Industrie. An den organi-
satorischen Arbeiten und der Vorbereitung dieses Bandes haben die
Herren Dr. H. Becker und Dipl.-Math. P. Ochsenschliger tatkridftig mit-
gewirkt. Ihnen gilt unser Dank ebenso wie dem Springer Verlag und den
Herausgebern der Reihe Lecture Notes in Computer Science fiir die Auf-
nahme des Tagungsberichts in diese Reihe.

Darmstadt, im Mirz 1977 H. Walter

H. Waldschmidt
H. Tzschach
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ON POLYNOMIAL TIME ISOMORPHISMS OF COMPLETE SETS

L. Berman - J. Hartmanis

In this note we show that the recently discovered NP complete
sets arising in number theory, the PTAPE complete sets arising in
game theory and EXPTAPE complete sets arising from algebraic word
problems are polynomial time isomorphic to the previously known

complete sets in the corresponding categories.

1. Introduction

The investigation of lower level computational complexity
and of analysis of algorithms has been strongly influenced
by the study of efficient reducibilities and
the resulting discovery of complete problems in various complexity
classes, [1,4,5]. The investigation of the complexity classes NP,
PTAPE, and EXPTAPE has shown that they are fundamental to a real
understanding of complexity theory and that complete problems for
those classes appear naturally in computer science, operations
research, and also in many branches of mathematics such as number
theory, game theory, and abstract algebra. As a matter of
fact a bewildering variety of complete problems have been found for
these classes. In particular, the families NP and PTAPE have
yvielded suprisingly many complete problems.

In [3] polynomial time computable isomorphism (p-isomorphism)

was investigated, and necessary and sufficient conditions were

Fo s ; ;
This research has been supported in part by National Science
Foundation Research Grant DCR 75-09433.



discovered that guarantee that a given NP complete set is

polynomial time isomorphic to a standard NP complete set, say the
conjunctive normal form satisfiability problem for Boolean functions.
Using these methods it was shown that all the well known NP

complete problems are isomorphic under p-time mappings. This
established that inspite of the different origins and attempted
simplifications all the classical NP complete problems are essentially
identical. Similar p-isomorphism results were obtained for the

well known PTAPE complete sets, again showing them to be essentially

the same set [3].
Since then several other interesting problems have been shown
to be complete for the classes NP, PTAPE, and EXPTAPE. At
the Eighth Annual ACM Symposium on Theory of Computation (1976)
it was shown that
(a) NP complete problems arise naturally in number theory {71,
(b) a large number of problems about winning strategies in
game theory are PTAPE complete [101],
(c) certain word problems in algebra (equivalently, certain
problems concerning properties of Petri nets) are complete
in EXPTAPE [2].
At the FOCS (1976) it was shown that numerous questions re-
lated to divisibility of sparse polynomials are NP complete [9].
The purpose of this paper is to show that these new complete
problems are polynomial time isomorphic to the corfesponding

classical complete problems in their respective classes.

2. Isomorhisms of NP Complete Sets

We recall that

NP = {L|L is accepted by a non-deterministic Turing machine

in polynomial time}



PTAPE = {L|L is accepted by a deterministic Turing machine in
polynomial tape}
EXPTAPE = {L|L is accepted by a deterministic Turing machine in

2cn tape, for some c¢>0, and n = length of input}.

We say that A, AcI*, is NP complete if and only if A is in NP
and for every L in NP there exists a polnomial time computable

function £ such that
xeL if and only if f£(x)eA.

PTAPE complete and EXPTAPE complete sets are defined similarly.
The notion of polynomial completeness has been of enormous
use in classifying recursive sets; however, it does have its
limitations. The class of NP complete sets contains many sets
of practical importance; and so, it is natural to study these
sets more closely in an attempt to gain greater insight into
whatever structural properties they possess which make them hard.
As an attempt to capture the notion of "polynomial structural

identity" we have made the following defintions

Definition: Two sets A and B are polynomial time isomorphic

(p-isomorphic) if there is a function f satisfying the following
properties:

1. £ is 1-1 and onto;

2. XeA iff f(x)eB

3. both f anf £ T can be computed in p-time.

One should note the similarity between this definition and
the definition of recursively isomorphic.

Let CNF-SAT designate the set of all satisfiable Boolean
formulas in conjuncture normal form. It is known that CNF-SAT
is a NP complete set [l1]. From Theorems 7 and 8 in [3] we can

derive the following result.



Theorem NP: An NP complete set B is p-isomorphic to CNF-SAT if
and only if there exist two p-time computable functions SB and DB
such that

1. (Vx,y)IS5(x,y)eB iff xeB]

2. (¥x,y) [Dg (Sp (x,y) ) =y].

Thus to determine whether an NP complete set B is p-isomorphic
to the classic NP complete sets [5], such as CNF-SAT, we just
have to check whether the set B admits the two p-time computable
functions SB and DB' The function SB is a polynomial time padding
function which encodes arbitrary strings y in x while preserving the
membership in the set B, and the function Dp must reverse this
process by determining in polynomial time what string was encoded
into x. It should be pointed out that these are very simple con-
ditions and in part the purpose of this paper is to demonstrate
how easily these conditions can be verified for different sets.

We illustrate this with an interesting new NP complete set
arising from quadratic Diophantine equations. In [7] it was

shown that the set

DIOPH = {ax2+by—c|a,b,c20 are integers and there are
G, i . 2 _
positive integers xo,yo such that axo+byO c=0}

i
is NP complete (where ax2+by—c is encoded in standard binary form),

Corollary: DIOPH is p-isomorphic to CNF-SAT.
Proof: From [7] we know that DIOPH is an NP complete set.
Therefore, from our previous theorem we just have to verify that
there exist two p-time functions S and D satisfying the two con-
ditions of the theorem.

Define the encoding function S((a,b,c),n) as follows:

Let A = the integer obtained by concatenating 1 and n treating the



§ . +t i
resulting binary string as an integer. Let n, be the 1—E digit

of fi when fi is expressed in binary.

If b # 0 then

begin find smallest prime so that p does not divide b

let j = 2'([_logp13]+1)( [_logzﬁ‘,]+l)

Llog fi
v i np2i ([ogpbl+1) 5= 1og b)+1)
i=0
a' = pja
b' = b
c' = pjc+bn'

end

if b = 0 then
begin if there are natural number solutions

then begin for any p-time pairing function f

a' =1
b' =0

2
c' = [f(f(a,c),n)]

end

else begin a' = 1
b' =0
c' =1+ [£(£(a,c),n)]2
end
end .
We must now show that the above function S(—,—) has the

desired properties. If b = 0, the e&orrectness of S is clear since
Square roots can be performed in p-time and both f and f—l are in

p-time by assumption.



If b # 0 the situation is less immediate. First, notice that
p, the smallest prime not dividing b, can be found in p-time since
for large n the product of primes less than n is 0(229). Therefore,
there is a prime p<[;pg log QJ which does not divide b and these
can all be checked in time polynomial in log b. This establishes
that S(—,—) can be computed in p-time. Note also that given
S((a,b,c) ,n) we can recover b and therefore also P.

The following observations will be useful in showing that

S(—,—) preserves membership in DIOPH:

1) pspn

2) n' is a sequence of blocks of (L}ngQJ + 1) digits

when expressed in base p. It is also self delimiting, i.e. given

n' =
[Log b] + 1

P and b and any string which ends in bn', n' can be recovered from
the end of the string. Therefore given S((a,b,c),n), we can

compute n. This guarantees that the decoding function D exists
and so, if S(—,—) preserves membership, we are done.

Let (x,,Y,) be a solution to ax2+by—c+0

then (xo,pjy°+n') is a solution to pjax2+by - (pjc+bn').

If (xl,yl) is a solution to
it & by = Iplo@nll = o
Y -n!
then we claim that (Xl’ j) is a natural number solution to
2 P
ax2 + by - ¢ = 0.

First, notice that p:l divides b'(yl~n') and p does not divide b so

pJ divides (yl—n').

1

; 5 y.-n . .

pJIaxl*rb( L ) = cl = apJXi + by - (pJctbn') = 0
p J 1




y,-n' _
So (Xl'—l3—_) is an integer solution and it merely remains
P

to show that yJTn'ZQ or equivalently that axi—c < 0. Now
pj(axi—c) = b(n‘—yl)
R

if axi—c>0 then since yl>0 and b>0 P~ < b(n'—yl) < bn' a
contradiction to observation 1.
Therefore, the function S(—,—) satisfies the requirements of the
NP Theorem and by observation 2 the needed D(~) function exists.
Thus

ax2 + by - ceDIOPH iff S[ax2 + by-c,d] ¢eDIOPH.
Therefore, the two p—timé computable functions D and S have the
required properties for DIOPH and we conclude from Theorem NP
that DIOPH is p-isomorphic to CNF-SAT, as was to be shown.

The above problem is unusual only in that the encoding and de-
coding functions are difficult to compute. This, no doubt, reflects
the complexity of the reduction used to show the problem NP-
complete. Our next example is again drawn from guestions in
classical mathematics; however, our isomorphism results apply in a
much more direct manner.

We consider the set

k2
0 g
DIV = {(al,...,akl;ﬁl,...,skz) | gl{x j-1) is not a

k2 83
factor of ] (x"7-1)}.
J=1

In [9] it was shown that this set is NP-complete. We now show:
Theorem: DIV is p-isomorphic to CNF-SAT.

Proof: Consider the map S(w,y) defined as

S((Qll-- .'akl;Bl’ cee ,Bkz) IY) = (al,... ,OtkerFBl,-- -,ﬁkZIY)

It is immediate that S(w,y)eDIV <=> weDIV. Letting D(—) be the



obvious function shows us that DIV satisfies the hypothesis of
Theorem NP and our theorem is established.

We should also note that many sets which are not known to be
NP complete do have our D and S function and will therefore be
isomorphic to CNF-SAT if they turn out to be NP complete.
Theorem: If Graph Isomorphism is NP hard then it is isomorphic

to CNF-SAT,

Proof: Graph isomorphism admits the S and D function and is in NP.
If it should be NP hard, (i.e. if every NP set could be many one

reduced to it) the hypothesis of Theorem NP would be satisfied.

Theorem: If NP = PSPACE then INEQ(0,1,+,-,*,),(,) is p-isomorphic
to CNF-SAT.

Pf: If np = PSPACE then INEQ is NP complete and so the
hypothesis of theorem NP are satisfied

In a similar fashion, our results apply almost immediately

to every natural set we know of which is not known to be in P

3. Isomorphisms of PTAPE Complete Sets

From Theorems 7 and 11 in [3] we can derive a result for
p-isomorphisms of PTAPE complete sets, similar to the previous
result for NP complete sets.

It is known that
LZ*={R]R is regular expression over Z,(,),*,u,* and L(R)=I*}

is a PTAPE complete set [8].

Theorem PTAPE: A PTAPE complete set B is p-isomorphic to LZ* if
and only if there exist two p-time computable functions S

and DB such that



1. (‘1x,y)[SB(c,y)eB iff xeB]

2. (Wx,y) 0 (s,0x,9)) = y1.°

In [10] a large number of new sets arising from decision
problems based on finite two-person perfect-information games were
shown to be PTAPE complete. We will select a few representatives

of these sets and show that they are p-isomorphic to L The

ok’
reader should be able to supply similar proofs for all other PTAPE
complete sets in [10]. Note that in [10] it is shown that

these sets are PTAPE complete under log -tape reducability.

Since log-tape computations can be performed in polynomial time
we know that these sets are also complete under polynomial time
reductions, as defined in this éaper.

For all the games described below we say that there exists

a winning strategy iff there exists a Winning strategy for the

player who starts the game. The players alternate in successive moves.
We assume that the games are encoded by a simple and straight

forward method, and for the sake of brevity, we will describe

them without always referring to thse encodings.

1. Input is a graph. Each player on his move places a
marker on an unoccupied node which is not adjacent to
any occupied node. Loser is first player unable. to move.
Ll={G|G is a graph with winning strategy}.

2. Input is a positive (i.e. no negations are present)

CNF Boolean formula A. Each player on his move chooses
a variable in A which has not yet been chosen. After
all variables have been chosen the starting player wins
iff A is true when all the variables chosen by him

are set to true and those chosen by his opponent to
false.

L, = {A|A CNF formula with a winning strategy}.
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3. Input is two collections of finite sets of integers.
A - {ai]1<i<m} and B = {Bi|ls<i<n}. The players take turns
choosing integers from the union of all the unoccupied sets Ai
and Bi. A set is said to be occupied if some integer in it
has been played. The starting player wins if all sets in I‘are
occupied before all sets in B are occupied. Any player who
simultaneously occupies the last unoccupied sets of A and B
loses.

Ly = ((A.B) | starting player has winning strategy)

Corollary: The sets Ll’LZ and L3 are all p-isomorphic to LZ*'

Proof: By the previous theorem we just have to show that each of

s 7

these sets, Li’ admits two p-time computable functions Di and S:L

1<i<3, satisfying the conditions of the theorem.

To show that such functions exist for Ll' we consider three graphs
which consist of a simple cycle through four, five and six nodes, ’
respectively. It is easily seen that for each of these graphs the second
player has a winning strategy. He can pick a node so that no further
play is possible in the graph. We use this fact to construct the
function S, as follows:

i

let G be a description of a graph and ye{0,1}*, then Sl(G,Y) = Gl
where Gl is a description of the graph G followed by (descriptions
of) a six-cycle graph (as a marker) followed by a sequence of
(descriptions of) four and five-cycle graphs encoding the digits
of y (a four-cycle denotes a "one" and five-cycle denotes a
"zero"). The function Sl is p-time computable (for any straight
forward encoding of graphs) and, furthermore, G is in Ll iff
Sl(G,y) is in Ll' To see this we just have to observe that if

there is a winning strategy in G then there is one in sl(G,y), since

the first player starts in G and any attempt to use the additional



