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Foreword

The concepts of derivative and integral are basic for the
calculus. They are not elementary; in any systematic text-
book on calculus the presentation of these concepts is prece-
ded by the theory of real numbers, the theory of limits, and
the theory of continuous functions. This preliminary proce-
dure is necessary to formulate the concepts of derivative and
integral in sufficiently universal form, to be applied to the
widest possible class of functions. If, however, we restrict
ourselves to a comparatively narrow class of rational func-
tions and utilize the illustrative language of graphs, we can
present the concepts of derivative and integral in a few
pages, sufficiently accurately and at the same time pithily.
And this is the purpose of the pamphlet intended for a wide
circle of readers; the knowledge of secondary school students
is sufficient to insure understanding of everything that will
be discussed.



1. Graphs

Though we assume that the reader is conversant
with graphs, we shall anyway remind the basic points.

Let us draw two mutually perpendicular straight lines,
one horizontal and one vertical, and denote by O their
intersection point. The horizontal line will be referred to as
the axis of abscissas and the vertical line—as the azis of ordi-
nates. The point O divides each line into two semi-axes,
a positive and a negative one; the right-hand semi-axis of
abscissas and the upper semi-axis of ordinates are called
positive, while the left-hand semi-axis of abscissas and the
lower semi-axis of ordinates are called negative. We mark
the positive semi-axes by arrows. Now the position of each
point M on the plane can be defined by a pair of numbers.
To do this we drop perpendiculars from the point M onto
each of the axes; the perpendiculars will cut on the axes the
segments OA and OB (Fig. 1). The length of the segment 04,
taken with the sign “4-” if A is located on the positive semi-
axis and with the sign“—" if it lies on the negative semi-
axis, will be called the abscissa of the point M and will be
denoted by z. Similarly, the length of the segment OB (with
the same rule of signs) will be called the ordinate of the
point M and denoted by y. The numbers, z and y, are called
the coordinates of the point M. Each point on the plane is
determined by coordinates. Points of the abscissa axis have
the ordinate equal to zero, while the points of the ordinate
axis have zero abscissa. The origin of coordinates O (the
point of intersection of axes) has both coordinates equal to
zero. Conversely, if two arbitrary numbers z and y of any
signs are given, we can always plot, and this is very impor-




tant, exactly a unique point M with the abscissa z and the
ordinate y; to achieve this we have to lay off the segment
OA = z on the abscissa axis and to erect a perpendicular
AM = y (signs being taken into account); the point M will
be the one sought for.

Let the rule be given which indicates the operations that
should be performed over the independent variable (denoted
by z) to obtain the value of the quantity of interest (deno-
ted by y).

Each such rule defires, in the language used by mathema-
ticians, the quantity y as function of the independent variable x.
It can be said that a given function is just that specific rule
by which the values of y are obtained from the values of z.

For instance, the formula

1
y= 1422

indicates that to obtain the values of y we have to square
the independent variable z, add it to unity and then divide
unity by the obtained result. If z takes on some numerical
value z, then by virtue of our formula y takes on a certain
value y,. The values z, and y, define a point M in the plane
of the drawing. We can then replace z, by another number z,
and calculate by the formula the new value y,; the pair
of numbers z,, y, defines a new point M, on the plane. The
geometric locus of all points of the plane, whose ordinates
are related to abscissas by the given formula, is called the
graph of the corresponding function.

Generally speaking, the set of graph points is infinite so
that we cannot hope to plot all of them without exception by
using the foregoing rule. But we shall not have to do that.
In most cases a certain moderate number of points is suffi-
cient for us to be able to realize the general shape of the

raph.

¢ TI;le method of plotting a graph “point-by-point” consists
just in plotting a certain number of graph points
and in joining these points by as smooth a curve as

possible. )
As an example we shall consider the graph of the function

i
y=T¥z_2 (1)
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Let us compile the following table
z 0 1 ‘ 2 3 —1 —2 ’ —3

y 1 1/2

1/5 1/10 1/2 1/5 I 1/10

The first line lists the valuesofz = 0,1, 2, 3, —1, —2,—3.
As a rule, integral values of x are more useful for calcula-
tions. The second line lists the corresponding values of y
calculated by formula (1). Plotting the corresponding
points on the plane (Fig. 2) and connecting them by a smooth
curve, we obtain the graph (Fig. 3).

The rule of plotting a graph “point-by-point” is, as we
have seen, extremely simple and requires no “science’”.
Nevertheless, it may be for this very reason that blind
adhering to this “point-by-point” rule may be fraught with
serious errors,
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Let us plot “point-by-point” the curve specified by the
equation

1
V=Gz—1 @)

The table of z and y values corresponding to this equation
is as follows

z 0 1|2\ 3 —1 —2 —3

1676 | 1/4 | 17121 | 1/676

y 1 | 1/4 l1/121

The corresponding points on the plane are plotted in
Fig. 4 which is very similar to Fig. 2. Connecting the plotted
points with a smooth curve we obtain the graph (Fig. 5).
It may seem that we could put the pen away and feel satis-
fied: the art of plotting graphs has been grasped! But for the
sake of a test let us calculate y for some intermediate value
of z, for example, for z = 0.5. After performing the calcula-
tions, we obtain an unexpected result: y = 16. This is in

10
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striking disagreement with our graph. And we cannot gua-
rantee that calculation of y for other intermediate values
of z—and their number is infinite—will not produce even
greater discrepancies. Unfortunately, the method of tracing
the graph “point-by-point” proves rather unreliable.

We shall discuss below another method of graph plotting
which is more reliable in the sense of safeguarding us from
surprises similar to one we have encountered above. Using
this method we shall be able to plot the correct graph of
Eq. (2). In this method—let us term it, for instance, “by
successive operations”—we have to perform directly in the
graph all the operations which are written downin a given
formula, viz. addition, subtraction, multiplication, divi-
sion, etc.

Let us consider a few simplest examples. We shall plot
a graph corresponding to the equation

y=z (3)

This equation expresses that all points of the curve of inte-
rest have equal abscissas and ordinates. The locus of the
points for which ordinates are equal to abscissas 1is the
bisectrix of the angle between positive semi-axes and of the
angle between negative semi-axes (Fig. 6).

The graph corresponding to the equation y = kz with
a coefficient k£ is obtained from the foregoing graph by
multiplying each ordinate by the same number k. Let us set,
for example, &k = 2; each ordinate of the foregoing graph

11
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must be doubled, so that as a result we obtain a straight
line rising more steeply (Fig. 7). With each rightward step
along the z-axis the line rises two steps up along the y-axis.
By the way, this enables us to perform readily the plotting
on squared paper. In the general case of the equation
y = kz with an arbitrary k£ a straight line is obtained. If
k > 0, then with each rightward step the line will rise %
steps up along the y-axis. If k << 0, the line will descend.
Consider the formula
y==kz+b (4)

To plot the corresponding graph we have to add to each
ordinate of the already known line the same number b. This
will shift the straight line y = kz as a whole upward in
the plane by b units (for & > 0; if b << 0 the original curve
will naturally be shifted downward). As a result we shall
obtain a straight line parallel to the original one;it does
not pass any more through the origin of coordinates but
cuts on the ordinate axis the segment b (Fig. 8).

The number % is called the slope of a straight line y =
= kzr + b; we already mentioned that this number k& shows
by what number of steps the straight line moves upward per
each rightward step. In other words, £ is the tangent of
the angle between the direction of the z-axis and the straight
line y = kx + b.

- The equation

y =k (z — )+ yo (47
corresponds to the straight line with the slope %; it passes
through the point (z,, y,) (Fig. 9), since setting z = z,
gives y = Y.

12
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Thus, the graph of any first-degree polynomial in z is
a straight line which is plotted according to the aforesaid
ruies. Let us pass over to the second-degree polynomials.

Consider the formula

y =2 ()
[t can be presented in the form
y=1y;, where yy=z

In other words, the required graph will be obtained if each
ordinate of the already known line y = z is squared. Let
us find out what this should produce.

Since 0* = 0, 12 =1, (—1)? = 1, we obtain three refe-
rence points A, B, C (Fig. 10). If £ > 1, then 2% > z; there-
fore to the right of the point B the curve will be above the
bisectrix of the quadrant angle (Fig. 11). If 0 <z < 1,
then 0 << 2* << z; therefore the curve between the points A
and B will be under the bisectrix. Moreover, we state that,
as it approaches the peint 4, the curve will enter an angle

bounded above by theline y = kz (however small k) and
below by the z-axis; indeed, the inequality 2% << kz is
satisfied for all x <C k. This fact means that the sought-for
curve is tangent to the abscissa axis at the point O (Fig. 12).
Let us move now leftward along the z-axis from the point O.
We know that the numbers —a and +a when squared give

3-742 13
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the same result a®. The ordinate of our curve will therefore
be the same both for z = +a and for z = —a. In geometri-
cal terms this means that the graph of the curve in the left-
hand semi-plane can be obtained by reflection relative to
the ordinate axis of the curve already plotted in the right-
hand semi-plane. We obtain the curve which is called the

parabola (Fig. 13)
Now, following the same procedure, we sketch a more

complicated curve
y = ax? (6)

and a still more complicated one
y=az*+ b (7)

The first of these curves is obtained by multiplying all
ordinates of parabola (5)—we shall refer to it as a reference

parabola—by a number a.
If a > 1 the curve will be similar to (5) but will rise

more steeply (Fig. 14).

If 0 << a<<1 the curve will be less steep (Fig. 15), and
when a << 0 its branches will turn downward (Fig. 16).
Curve (7) will be obtained from curve (6) by shifting it
upward by a segment b if b > 0 (Fig. 17). If b << 0, we
have to shift the curve downward (Fig. 18). All these curves
are also called parabolas.

14
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Consider now a more complicated example of plotting
graphs by means of multiplication. Let the problem be to
plot the graph of the equation

—z(z—1)(z—2(z—3) ®)

Here we have the product of four multipliers. Let us plot
each of them separately: all of them are straight lines paral-
lel to the bisectrix of the quadrant angle and cutting the
segments on the ordinate axis (see Fig. 19)

0, —1, —2, —3

At the points 0, 1, 2, 3 of the z-axis the sought-for curve
will have the ordinate O since the product is equal to zero
if at least one of the factors is equal to zero. At other points
the product will differ from zero and its sign can easily be
found by considering the signs of the co-factors. Thus, all
factors are positive to the right of the point 3; hence, the
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