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Preface

These lectures originated in a course given at Harvard in 1961.
Algebraic topology has advanced a long way since that time. Throughout
mathematics, the right kind of problem provides the challenge which
leads to the improvement of technique and the development of new methods.
To a considerable extent, problems about Stiefel manifolds have per-
formed this function in algebraic topology. Thus I felt it might be useful
to bring my lectures up-to-date and give some account of what is now
known.

The basic theory necessary can be found in a number of text
books, such as that of Spanier [132]. At appropriate places I have sum-
marized such additional theory as is needed, with references to the
literature, in the hope that these notes may be accessible to non-
specialists and particularly to graduate students. Many examples are
given and further problems suggested.

The literature on Stiefel manifolds is extensive, as the biblio-
graphy at the end of these notes will indicate. The topics I have chosen
to discuss in detail are mainly those I have worked on myself, but as
well as my own papers I have drawn on those by Adams, Atiyah, Bott
and many others. Although much of the material has been published
before, in some shape or form, there is a fair amount which has not.
The section on further development contains information about work by
Friedlander, Gitler, Mahowald, Milgram, Zvengrowski and others which
is in process of publication; I am very grateful to those concerned for
communicating these results. These notes were read in draft form by
Sutherland, Woodward and Zvengrowski, whose comments have been
most helpful. I would also like to thank Wilson Sutherland and Emery
Thomas for allowing me to quote from joint work, and to thank the
American Mathematical Society, Clarendon Press, London Mathematical
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Society and Pergamon Press for permission to draw on previously

published material.

Oxford University Mathematical Institute

Take the topological product S" X §” of the n-sphere with itself.
Remove the diagonal and the antidiagonal. What is left is the space Xn
of pairs (x, y) such that x # ty. For what values of n is it possible
to make a continuous deformation of Xn into itself in which each such
pair (x, y) is deformed into the pair (y, x)? It is known that the de-
formation is impossible unless n + 1 is a power of two; and that the
deformation is possible for n=1, 3, 7, 15 and 31; the position for
n= 63, 127, ... is at present unknown.
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1-Introduction:algebra versus
topology

There are three families of Stiefel manifolds, the real, the com-
plex and the quaternionic. Readers of these notes may already be familiar
with the account of their basic properties to be found in standard texts
such as Steenrod {133] and Steenrod-Epstein [134]; a summary is given
in §2 below. In this introduction we shall only be dealing with the real
family, which is undoubtedly the most interesting. Some of the real
Stiefel manifolds have particular topological properties, due to the
existence of certain constructions which are algebraic in origin. Our
aim is to try and understand, from the topological point of view, why
some of them have these properties while others do not.

The notation we use is fairly standard, Thus R™ denotes
euclidean m-space (m =0, 1, ...) with the usual embedding of R™

in Rm+1. The vectors v € R™ such that Ivl =1 form the unit ball

B™ and those such that ]vl =1 form the unit sphere Sm_l. The
projective space P™ ! is obtained from S™ ! by identifying v with
m-l_ The group of orthogonal transformations of r™
. : m-1 m R

is denoted by O m Thus P CP and Om C Om 410 In the usual

way. Unless it is necessary to be more specific the basepoint in any

-v forall veS

space is denoted by e; orientation conventions are as in [64], and
tn €7 (Sm) denotes the class of the identity self-map.

Followmg Stiefel [136] and many others let V K where
1 =k =n, denote the manifold of orthonormal k- frames in R", Ele-
ments of Vn,k correspond,km an obwrrlmus way, to norm-preserving
linear transformations of R~ into R, The orthogonal group 0k acts
on Vn,k by pre-composition, while the orthogonal group On acts on
Vn,k by post-composition. The latter action is transitive and enables
Vn k to be identified with the factor space of O by On-k' For k< n
the rotation group can be used instead of the full orthogonal group.

If we pre- or post-compose with a rotation we obtain a self-map



of V K in the homotopy class of the identity. If we pre-compose by a
non- rotation we obtain a self-map of homotopy class A, say; if we post-
compose by a non-rotation we obtain a self-map of homotopy class K,
say. In the semigroup of homotopy classes of self-maps of vn,k these
canonical classes satisfy the relations

2 2 k n

(1.1) A" =1=u°, M=px, X =p,

To prove the last of these, represent elements of V by matrices

with k columns - the vectors of the k-frame - and n rows The class
A includes the self-maps which change the sign of any column. The class
@ includes the self-maps which change the sign of any row. Since chan-
ging the sign of all the columns has the same effect as changing the sign
of all the rows we obtain Ak = yn, as asserted. Note that A =1 if n

is even and k odd, while p=1 if n is odd and k even. In some
applications it is the class £ = Ap which is important; note that £=1

if n and k are both odd, '

We can fibre V K over Vn =g" 1 by taking one vector (say
9
the last) from each k- frame A cross-section f: s Vn Kk associ-
ates with each point v € S" n-1 an orthonormal k-frame (vl, .. 1 Ve 10 v).

Thus (vl, ceey Vk-l) = g(v), say, is an orthonormal (k - 1)-frame; we
referto g: Sn-1—v n, k-1
(v s eees ) as a (k - 1)-frame of tangents to 8" at the point v.

as the projection of f. We can always regard

Hence a cross- section of V ,k over 87" is equivalent to an (ortho-
normal) (k - 1)-field on Sn- 1 i, e. a field of orthonormal tangent (k - 1)-
frames. Any such (k - 1)-field spans a field of tangent (k - 1)-planes.
Conversely Steenrod has shown, in §27 of [133], that if s" ! admits a
field of tangent (k - 1)-planes and 2k =<n + 1 then Sn'1 admits a
(k - 1)-field. This does not mean, however, that every field of tangent
(k - 1)-planes can be spanned by a (k - 1)-field (see [62]).

For what values of n and k does V Jk admit a cross-section,
over S ‘7 Take k = 2, for example, We need to find a self-map g
of 8" ° such that g(v) is orthogonal to v, for all v eSn'l. When n
is even, say n =2m, we can regard v as a complex m-vector, rather
than a real 2m-vector, and define g through multiplication by i. In

terms of coordinates, if v = (xo, X, ) then

17 "0 x2m—2’ X2m-1



g(v) = (-xl, Xgs oovs “Xopy ys x2m_2). Conversely, suppose that g

exists, with g(v) orthogonal to v. Then
ht(v) = v cos 7t + g(v)sin #t (0=t=1)

defines a homotopy between the identity on Sn'1 and the antipodal map.
Since the degree of the latter is (-1)" it follows at once that n is
even. Thus Vn 2 admits a cross-section if and only if n is even.

H

Given k, we can construct cross-sections of V for suitable

nk
values of n as follows. Consider the Clifford algebra bm(m =01,...)

generated by an anticommuting set of elements (el, ceey em) such that

Thus Cu =R, the real numbers; C_ = C, the complex numbers; and

1
C2 = H, the quaternions. The next five Clifford algebras are easily

shown to be
H ® H, H(2), C(4), R(8), R(8) ®R(8),

where A(q), for any algebra A and positive integer q, denotes the qth
order matrix algebra over A. Moreover (see [9], for example) the
matrix algebra Cm(16) of order 16 over Cm is isomorphic to Cm +8
Thus all the Clifford algebras can be expressed in terms of matrix
algebras over R, C or H.

Let o(k) denote the number of integers s in the range 0< s< k
suchthat 8 =0, 1, 2 or 4 mod 8. Clearly R" can be represented as a

C
k-1
representation can be orthogonalized, in the usual way, so that the

-module whenever n = 0 mod 4, where a = Zo(k). Any such
generators e correspond to orthogonal transformations,

1t S Fre
-’Vn,k is given by

anif then a cross-section f : S
-1
f(v) = (el.v, vers € 1°Vs v) (v es™ ).

The existence of these Clifford cross-sections was noted by Eckmann [38],
with reference to the algebraic results of Hurwitz [60] and Radon [118].
We give an example, due to Zvengrowski, of a Clifford cross-section of




V16 9 (the first eight column vectors are tangent to 815 at the points
H

given by the last).

X, X, X X, X X X, KX
X L 5 % 3 % %
o %s X, % 6 1 X % X,
X % X, X 7 o % X%
X2 X, 2 1 0 "X, "X, X X
X3 X, X 0 X X, X X, Xy
X, R 0 X, X “Xg 6 7 X
X, X X, -x -x X, x, X X
X s Xy Xy Xy Eg Fye K Xs

% X1a 15 12 13 X0 *n 8 %

X, X3 12 %5 e % 8 11 10

X 12 13 12 %15 8 9 X0 *ui

% X e % Xa 15 X14 13 T12

X o X1 Xg X X4 15 T2 %13

X, 9 8 "1 X0 % X R Xy

%, X Xy o X T X, X2 %15

It was Adams [3] who finally proved the long-conjectured

Theorem (1 2). The Stiefel manifold V Kk admits a cross-
’

gsection, over s , if and only if n = 0 mod .

Sufficiency we have already established. Necessity is trivial for
k =1 and true for k = 2, as we have seen. For higher values of k
various results were obtained by G. W. Whitehead [153], N. E., Steenrod
and J. H. C. Whitehead [135], amongst others. To indicate the kind of
methods used in this subject we shall now give the proof of (1.2) in case
(i) k- 1 is a power two or (ii) k # 3 mod 8. In particular we prove
(1. 2) for all k =10. The remaining cases are more difficult and will
be dealt with later.

The Stiefel manifold V n,k contains a subspace P n,k which
plays a major role in what follows. To defme P n, k’ f1rst consider the
real projective (n - 1)-space P 1 /Z Any point *x € i



where x = (xl, cevy xh), determines a matrix
||61j- 2xixj" i=n-k+1,...,mj=1,..., n).

The k column vectors of this matrix constitute an orthonormal k-frame

in Rn, i.e. an elementof V . All points of the subspace Pn'k'ICPn'1
’

spanned by the first n - k coordinates determine the same element of

A We define P to be the space pl /Pn'k'1 obtained from p™!

nk’ nk
by collapsing Pn'k‘1 to a point and regard P, , asa subspace of V_
’
under the embedding just described. When k = n we interpret P .n as
the space obtained from p" n-1 by adjoining a point corresponding to the

identity matrix, Notice that Pn 1= Vn 1 In 83 below we shall prove
1 ’

Proposition (1. 3). The pair (V k’ ) is (2n - 2k)-con-
nected.

In fact the pair can be given CW-structure so that Vn K is
obtained from P by attaching cells of dimension 2n - k’+ 1 and
higher. Now let S denote the suspension functor., A simple geometric

construction, as follows, enables us to prove

Proposition (1.4). If V_ . has a cross-section then S"P

n,k m,k
has the same homotopy type as P for all m = k.
m+n, k ———
Let f:8% vy . be @ cross-section and let f_, for
’
v es™ , denote the norm-preserving transformation Rk -+ R" corres-

ponding to f(v). Consider the map

O:BnXRkaR ->Rm+n'k><Rk

which is given by

o, v, 2) = @3, @), 0-t)52)

where 0 =t=1 and y eRm'k, z eRk. Since 6(tv, -y, -z)=-0(tv, y, z),

Ie(tv, y, z)l = |(y, z)|, it follows that # induces a map

1 n m-k-1 n-1

(Bn x Pm— , B m+n-1 m+n—k—1)

X P us™l x p™ Yy (p P

and hence a map



6 : (Bn/sn—l)/\ (Pm—l/Pm-k— )= (Pm+n— /Pm+n-k-1)
where ~ denotes the smash product., If f is a Clifford cross-section
then ¢ is a homeomorphism, In the general case it can easgily be shown
(see §6) that ¢ induces an isomorphism in homology and hence is a
homotopy equivalence, by the theorem of J, H. C. Whitehead [159].

Let us now see what information can be extracted from (1. 4) by
using the Steenrod squares in mod 2 cohomology. Recall that

@l = Z,[a] mod a®,

where a generates Hl(Pn_l), and that

Sql a] (])a1+j ,

by the Cartan product formula. From the cohomology exact sequence of
the cofibration

Pn-k-1 - Pn-1 -P
n,k

we see that IN-Ir(Pn k), for n-k =r < n, is generated by an element
’
ar, where

=
(1.5) Sqa (244

for j=n-k and i+ j< n, With (1, 4) in mind we prove

Proposition (1. 6). Given n and k suppose that § "p m,k and

have the same homotopy type for all m > k. If k= ZS +1,

P
m+n, k s+l

for some s, then n =0 mod 2

Choose m > k sothat m =k mod 257}, Then sqlH™" k(Pm )
’

by (1.5), forall i> 0. If n is an odd multiple of 2¥ , where r < s,
then SqH™ ™K@ ) #0 for 1=2", hence &P and D
m+n, k m,k m+n, k

are not of the same homotopy type, since Sq commutes with suspension,

This contradiction establishes (1. 6) and hence, using (1. 4), proves (1. 2)
when k - 1 is a power of two. The original argument of Steenrod and
Whitehead is similar, except that (1. 3) is used instead of (1. 4),

Let us now replace cohomology by the functor iR formed from



real vector bundles over a given space. Recall (see [9]) that %R(Pn'
is cyclic of order an with generator a =[L] - 1, where L denotes the
Hopf line bundle over Pn'l, and that L =L ® L is trivial. For any
integer t the Adams operation a[/t is defined, as in [3], and has the
property that tPt[L] = [Lt]. Hence u/ta =0 or a accordingas t is
even or odd, Just as in cohomology the exact sequence of the cofibra-
tion enables ?{R(P ) to be calculated. Provided n #k mod 4 we find
that KR(P k) can be identified with the subgroup of KR(P genera-
ted by 2k a when n=k mod 4 t?ere is an extra summand whlch
complicates matters, Moreover ¥ = 0 or 1 according as t is even
or odd.

Let 7(k) denote the number of integers s in the range 0<s<k
suchthat s =0, 1, 3or 5mod 8. Thus 7(k)=o0(k)- 1 for k=+3
mod 8, and T(k) = o(k) otherwise. We prove

Proposition (1.7). Given n =0 mod 8 and k, suppose that
s"p m, k and P m+n, k have the same homotopy type for all m > k.

Then n is d1v1sib1e by Zf(k).

Choose m > k sothat m #k mod 4 and write o(m)-oc(m-k+1)=f,

n/2

Recall that 11/ (sm" (S*)nzl/t, for all values of t, where

(%" : Kp(Py ) =~ K" .

Let t be odd. Then zpt =1 in the domain, as we have seen, and so
¥t =t"/2 in the codomain. On the other hand ¥'=1 in K, (P
Since all these groups are cyclic of order 2f this implies that

).

m+n,k

n/2

1.8 t%2 =1 mod 2.,

However if n is an odd multiple of 2e'2, for any e = 2, then

n/2 e-1

1.9) 3¢ _.1=2%" mod 2°,

by an elementary calculation as in §8 of [3]. Putting t = 3 we obtain
an immediate contradiction unless n is an even multiple of 2f 2
However m can be chosen, with m Zk mod 4, sothat f-1=2 (k),

and so (1. 7) is proved.



To obtain (1. 2) for k ¥ £3 mod 8 we use (1. 6), with (1.4), to
deal with the cases k = 4 and to show that n = 0 mod 8 when k = 5;
then we use (1. 7), with (1. 4), to complete the proof. The original
proof of (1.2) by Adams is similar, except that (1. 3) and other results
are used instead of (1. 4).

Not every cross-section is homotopic to a Clifford cross-section,
as can easily be seen, but a recent result of Milgram and Zvengrowski
[111] is of interest here. A cross-section f: sl Va, k is said to
be skew if f(v) = (vl, cees vk) implies that f(-v) = (-vl, ooy -vk).
For example, Clifford cross-sections have this property. Milgram and
Zvengrowski show that every cross-section is homotopic to a skew cross-
section,

Another kind of cross-section is as follows. Consider the self-
map T of V Jk which changes the sign of the last vector in each k-
frame. Thus T is the ant1podal map in the case of V = Sn'1 Let

, 1
us say that a cross-section f : st sy is homotopy—equivanant if

Tf ~ fT. The case k=1 is trivial. Whelr{l k = 2 the condition can be
taken as Tf = f, since no cross-section exists unless n is even. If

k isoddand n is eventhen T =~1 on Vn,k, by (1.1). Hence the
interest resides in the case k even, Notice that a cross-section of

Vn, k+1

For let f1 , fk :

determines a homotopy- equivariant cross-section of V
n_
S

K
-5 bpe the first k components of a

cross-section of Vn, K+1’ and write ht(v) = (flv, ceey fk—lv’

v cos 7t + fkv sin #t). Then h0 is a cross-section of Vn K such that
£

h0 o h1 = Th o In §8 and §9 below we shall prove

Theorem (1.10). There exists a homotopy-equivariant cross-

section of Vn Kk if and only if n = 0 mod a.k where ik 4= 2a.k
for k=2 or k=0 mod4, and ﬁk . otherwise.

Let us now turn to some problems which have not yet been solved.
By general theory (see [133]) V n,k is trivial as a fibre bundle over
s™1 it ang only if the associated principal bundle V_ n= O, admits
a cross-section, i.e, if and only if n=2, 4 or 8. Thus V4 k k= 4)
and V8, k (k = 8) are trivial as fibre bundles. For tr1v1a11ty in the

sense of fibre homotopy type, however, nothing is known beyond



Theorem (1, 11), If Vn Kk is trivial as a fibre space over
4
g1 then n=2" for some r > o(k). Furthermore if k is even then
n=2, 4or8,

The proof will be given in §20 below. It ig tempting to conJecture
that v n,k is non-trivial as a fibre space if it is non-trivial as a fibre
bundle: the first unsettled case is that of v, 6, 3 As Scheerer [124] has
pointed out the solution to this problem is 1mportant for the homotopy
classification of Hopf homogeneous spaces.

Another unsolved problem concerns the self-map T of V K
which changes the sign of the last vector in each k-frame, Let us say
that V K is neutral (elsewhere row-simple) if A = 1, where X denotes
the homotopy class of T, as before. Thus V ,k is neutral, by (1. 1),
whenever n is even and k odd. Moreover V 1,k is neutral when
n=23or 7and k is even, gince then V is a retract of V n+1, k+17
as remarked above, In §21 below we shall prove

Theorem (1. 12), Let n be odd and k even If Vn k 1s neutral
then either n + 1 or k-n+1 is divisible by 2 » where t denotes the

least integer such that 2% > k.

This gives no information when k = 2. However, in $22 we shall
prove

Theorem (1. 13), Let n be odd. Then V )2 is neutral if and
only if the Whitehead square w, €7, 1(S ) can be halved,

Here v denotes the Whitehead product of the generator
L €7 (S ) with itself. This vanishes, as is well known, if and only if
n=1, 3 or 7. Toda [144) has shown that w.. can be halved and
Mahowald, in unpublished work, that L can be halved. It is not
difficult to show that W (n> 2) cannot be halved unless n+ 1 iga
power of two: in §23 below we shall prove

Theorem (1. 14). Let n be odd and let n = 2k - 2, where
k=2, 40rs8, I V ,k is neutral then n + 1 is a power of two.

It seems reasonable to conjecture that (1. 14) is true for all even
values of k,



Finally let us take another look at the problem of the existence of

cross-sections. Suppose that we fibre V 1,k over V n,k-1 by taking
the last k - 1 vectors of each k-frame to form ak- 1) frame. Any
map f: Vn, k-1 Vn,k determines a map g: Vn,k-l , by taking
the first vector of each k-frame, and f is a cross-section if and only if
the vector g(vl, aeey vk-l) is orthogonal to Vis eees Ve q for every
orthonormal (k - 1)-frame (Vl, cens vk-l) in n-space. When n = 3 or
7and k=3 suchamap g can be defined as follows. Elements of
Rn+1 can be regarded as quaternions when n = 3, as Cayley numbers
when n = 7. Moreover the pure elements of the algebra (i. e. those
with real part zero) determine a subspace which we identify with Rn.
If u and v are pure then uv is orthogonal to both u and v; moreover
uv is pure when u and v are themselves orthogonal, Hence a map g
with the desired properties is defined by g(u, v) =uv. Thus V n, 3
admits a cross-section over Vn 2 for n=3o0r 7.

Conversely, if V )3 admlts a cross-section over V )2 then
s" is an H- space and so n = 3 or 7, by the main theorem of Adams
[1]. To see this, consider the unit ball B" c R" , of which 8" " is the
boundary, and the sphere Sn, of which Sn'1 is the equator and e, say,
the poles. Given a cross-section f : Vn 2 - Vn’ 3 with projection

g:v, o= Sn-l, let g': B" x B" = BN ‘denote the map defined by
H

g'(au, bv) = ab sin 6 g(u, (v - u cos 8)/sin 6),

where u, v € s%! ang a, beI=[0, 1], also cos 8 = u.v, the inner

product, for 0 =60 =7 Now let h: s" x 8" = s" be defined by

h(ae + x, Be +y) = (aBe - x,y + ay + Bx + g'(x, y), where X,y € B"

and -1 <a, B=1. Clearly h(ae + x, e) = ae + x, h(e, Be+y)=Pe+y,
and so h constitutes an H-structure on S". Of course this construction
is modelled on the formulae for quaternionic and Cayley multiplication
contained in the previous paragraph. Summing up, we have proved

Theorem (1.15), There exists a cross-section of V over

Vn,2 if and only if n= 3 or 7.

Cross-sections of Ve , over Va 3 have been exhibited by

’ 4

n,3
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