

TP39!
L2377 8663712

COMPUTER SCIENCE TEXTS

A First Course in
Computability

V.J. RAYWARD-SMITH

MA, PhD
Senior Lecturer in Computing
University of East Anglia
Norwich NR4 7TJ, UK

LT

E8663712

BLACKWELL SCIENTIFIC PUBLICATIONS \
OXFORD LONDON EDINBURGH

BOSTON PALO ALTO MELBOURNE

%
-
¥t
o §
X
&
>
o 5
P
oot

»
gt

© 1986 by

Blackwell Scientific Publications

Editorial Offices:

Osney Mead, Oxford, OX2 OEL

8 John Street, London, WCIN 2ES

23 Ainslie Place, Edinburgh, EH3 6AJ

52 Beacon Street, Boston
Massachusetts 02108, USA

667 Lytton Avenue, Palo Alto
California 94301, USA

107 Barry Street, Carlton
Victoria 3053, Australia

All rights reserved. No part of this
publication may be reproduced, stored
in a retrieval system, or transmitted, in
any form or by any means, electronic,
mechanical, photocopying, recording or
. otherwise without the prior permission
of the copyright owner

First published 1986
Set by Thomson Press (India) Ltd,

New Delhi, and printed and bound in
Great Britain

Distributed in North America by
Computer Science Press Inc., 1803 Research
Blvd, Rockville, Maryland 20850, USA

British Library
Cataloguing in Publication Data

Rayward-Smith, V. J.
The first course in computability.—
(Computer science texts)
1 Electronic data processing
I Title II. Series
001.64 QA6

ISBN 0-632-01307-9

A FIRST COURSE IN
COMPUTABILITY

s BowA -
AT L gt
Paeed, » . 5

COMPUTER SCIENCE TEXTS

CONSULTING EDITORS

K. J. BOWCOCK

BSc, FBCS, FIMA
Head of the Computer Centre,
University of Aston in Birmingham

H. L. W. JACKSON

DipEd, MSc, PhD, FBCS, FIMA
Head of Department of Computing Centre
North Staffordshire Polytechnic

K. WOLFENDEN

Emeritus Professor of Information Processing,
University College, London

Preface

Much of computer science is centred around the design, analysis and
efficient implementation of algorithms to perform various tasks. This book
is designed to answer the most fundamental questions that arise from this
type of activity—questions such as ‘What is a computer capable of?’, and
given a problem, ‘Is there any algorithm to solve it?, and if so, ‘Is there
an efficient algorithm? These and similar questions are of such funda-
mental importance that they must be answered carefully and rigorously.

The rigour in this text is provided by the well-tried discipline of
mathematical reasoning. Some computer scientists may find this daunting
but there is really little alternative. This text has been written so that a
computer scientist in his second or third year should be able to follow all of
the arguments. Even a first-year student should reap considerable benefit
from reading this material. The concept of solvability is a key idea in
computing and the formulation of the concept of unsolvability provides an
exciting insight. Once efficiency considerations are introduced the separ-
ation of solvable problems into tractable and intractable is a natural next
step. The work on intractability has only been developed during the last 15
years but is nevertheless not particularly difficult.

Theoretical computer scientists tend to assume their audience are all
familiar with Turing machines. These machines provide a simple comput-
ational model which enables us to discover fundamental results. They are
widely used and have been widely adopted as the standard model in
computability theory. This is why we have used them in this text. Many
other equivalent devices would have sufficed; indeed, their use could have
simplified some of the presentation. However, tradition in the subject
should be respected and.so long as the majority of published results are
presented in terms of Turing machines, it is important that computer
scientists understand their formulation.

Computability is often taught to mathematicians, and rightly so! The
use of functions is central to mathematics and a full understanding of them
would appear a basic requirement of any honours degree. It must be
admitted, however, that many university mathematics departments rele-
gate computability to a final year option. Maybe this book will convince

Vil

viii Preface

university teachers that the material can be taught successfully earlier in the
course and be understood by their students.

A First Course in Computability is one of three texts which together
present the theoretical foundation of computing at an undergraduate level.
The other two books in the series are A First Course in Formal Language
Theory by V. J. Rayward-Smith, and A First Course in Formal Logic and its
Applications in Computer Science by R. D. Dowsing, V. J. Rayward-Smith
and C. D. Walter. All three are published by Blackwell Scientific Public-
ations and it is hoped thereby to provide the academic computing commun-
ity with a thorough presentation of computing theory. Most theory books
are more suitable for advanced undergraduate and postgraduate study. It is
hoped that this new series will correct this imbalance and restore theory to
its rightful place, central to undergraduate computing degrees.

I would like to express my thanks to my colleagues at the University of
East Anglia, Norwich, for their encouragement during the preparation of
this text. In particular, I would like to thank Dr G. D. Smith for his
comments on earlier drafts. I was particularly fortunate in having an able
and co-operative typist, Ms Carol Bracken, without whom the manuscript
would have remained an untidy pile of pencilled notes. Finally, I am
grateful to Mr Hugh Prior, also of the University of East Anglia, who
developed the Pascal program listed in the Appendix as a Turing Simulator.

V. J. Rayward-Smith

Introduction

A naive user of a computer can view it as a ‘black box’ into which he feeds
his data as input and from which he receives output. He does not
understand programming; someone else has programmed the machine for
him. The computer, as far as this user is concerned, merely takes his input
(some string of symbols, x, say) and computes some output. This output,
itself a string, generally depends upon x and can thus be regarded as a
function of x, f(x). The exact nature of the function, f, will depend upon
the program; a different program will compute a different function. (See
Fig. 0.1.)

In this book, we will formulate a model for the workings of the ‘black
box’ and its programs. Then we can study all valid programs and the
functions they compute. We want our model to be simple enough for ez.y
analysis, yet powerful enough to compute all the functions which, from
experience, we expect to be computable—such functions are said to be
‘effectively computable’. A formal definition of ‘effectively computable’ is
difficult to obtain because the term is used for a conceptual class of
functions, i.e. that class of functions for which a computer scientist would
expect to be able to write programs. For example, the function square,
which takes as input a representation of an integer (say in decimal notation)
and delivers a representation of that same integer multiplied by itself, is
effectively computable. But to what extent is square computable in practice?
No real world computer can compute square(x) for all integer represent-
ations, x. The reason is simple; any real world computer has finite store and
thus cannot compute square(x) if x is so large that there is not enough store.
Yet, we know that given any x, we can compute square(x) if only we have a
large enough machine. We should not let limits on storage restrict our
definition of computability. Thus we can think of an effectively computable
function as any function computable on some machine with no limits on

Input Output
Black
X » bof(>f(x)

Fig. 0.1. The naive of a computer.

X

X Introduction

storage. It follows that if our model for the ‘black box’ is to be able to
compute the effectively computable functions, then it must itself be
equipped with a limitless store. Then, in any finite computation, only a
finite amount of store will be used but there will be no a priori limit.

The model for the ‘black box’ that we will use is that which was
proposed by one of the pioneers in this field, Alan Turing (1936). Several
alternatives have been proposed, e.g. Post machines (Post, 1936), and
unlimited register ideal machines (URIMs) (Shepherdson & Sturgis, 1963).
Church’s thesis, originally hypothesized in 1936 (Church, 1936a) and arising
from work by Godel (1931) and Kleene (1936), can be expressed as the
statement that ‘every effectively computable function is Turing comput-
able, i.e. is computable on a Turing machine’. Without a rigorous and
formal definition of effectively computable, this is an impossible statement
to prove formally. However, all the available evidence supports the truth of
this hypothesis. Firstly, no one has been able to produce an intuitively
computable function that is not Turing computable. Also, other machines
designed as a model for a general computing device such as Post machines
and URIMs compute precisely the Turing computable functions. Finally,
an attempt to produce a generating scheme for all the effectively comput-
able functions defines precisely the Turing computable functions (see
Chapter 5). So, whenever one comes across the phrase “Turing computable’,
one can infer ‘effectively computable’, and vice versa.

The Turing machine (TM) is equipped with limitless store which can be
viewed as a tape divided into a number of locations indexed ... — 2, — 1,0,
1, 2,... as in Fig. 0.2. In each location, we can write a symbol from some
prescribed alphabet. Initially the tape will be blank, i.e. each location will
hold the blank symbol, denoted by A . Theinput x = x,x,...x, will then be
written one symbol at a time in locations 1, 2,...,n.

The TM has a head which moves backwards and forwards across the
tape scanning the locations and inserting and deleting symbols. The tape
head can be in any one of a finite number of states, Q. Initially, the tape

-3 -2 -1 0 1 2 3 n
Tape ——— Al Al Aalx]x | X=X | A A]|-——-
Head| q

Fig. 0.2. The initial configuration of a Turing machine with input x = x,x,...x,.

Introduction

head will be in a prescribed initial state, q,€Q, and will scan locat .

one. The machine will only halt if the tape head reaches any one o
number of final states.

At any time during the computation, the head will then be in some
state, ¢,, and will be reading some symbol on the tape (called the current
tape symbol). The next step of the TM depends upon these values. If the
machine does not halt, ie. if g, is not a final state, the tape head can
overwrite the current tape symbol and then possibly move to the adjacent
location to the left or to the right. At the same time, the state, qi, may or
may not change. If the machine halts, then its output is taken to be the
symbols in locations 1,2,..., m where m + 1 is the first location greater
than 0 which contains a blank symbol.

The precise action to be taken at each step of a computation is defined
by the Turing machine program. In common with most authors, we will use
the phrase ‘Turing machine’ not only to include the actual machine but also
to include a prescribed program. Thus one Turing machine differs from
another when its program differs. Any step of a TM program is given as an
action depending upon the state of the head and the current tape symbol.
These actions are tabulated as a list of 5-tuples of the form given in Fig. 0.3.

Current | Current tape New New Direction

state symbol state | symbol| of move
<4+—O0ld » New —»
Fig. 0.3.

This list of 5-tuples is the TM program. Hopefully, for any current state
which is not a final state and for any current tape symbol likely to arise
when the TM is in that state, there will be just one relevant 5-tuple in the
list and this will define the new state of the head, the symbol to replace the
current tape symbol and the direction in which the head must move (L
for left, R for right, 0 for staying put). If a TM program exhibits this
uniqueness property, it is said to be deterministic.

As an example, let us construct a very simple Turing machine to
compute the following. We assume the input is a string, x, comprising a
positive number of 1s. Our TM must then result in an output of 1 if the
number of 1s in x is even but otherwise it must give an output of 0. Thus
this TM computes the even function where

1 if x contains an even number of 1 S,
0 otherwise.

even(x) = {

x11 Introduction

We first describe an algorithm in a ‘structured English’ code and then
we will develop the TM program from this. The essential idea is first to
scan the input from left to right and remember whether an even or odd
number of 1s has been scanned by using two states: g, for even and g,
for odd. Eventually, we come across a blank symbol. If we are in state
do, the number of 1s was even and if in state g, the number was odd.
Thus, we start the TM with our input in locations 1,2,... and in state g,
scanning location 1. Using {...} to enclose comments, the first stage of
the algorithm is:

while current-tape-symbol = 1 do
if state = q, then change to state g, ; move right
else {state = g, } change to state g,; move right
endif

endwhile;

{current-tape-symbol = A } move left

We now want to delete all the 1s on the tape and write the appropriate
output in location 1. To achieve this, we now move left deleting all the
Is until we meet a A. This must be in location 0. We then move right in
preparation for the third stage in which we write the output in location
1. Thus the second stage of the algorithm is:

while current-tape-symbol =1 do

replace symbol by A ; move left
endwhile;

{current-tape-symbol = A } move right

The tape head is now at location 1 and we simply write 1 if the current
state is g, and O if the current state is g,. At the same time, we change
state to the halt state, q,. Hence the final stage of the algorithm is:

{current-tape-symbol = A }

if state = q, then change to state g,; replace symbol by 1
else {state = q,} change to state g,; replace symbol by 0
endif

The first stage of the algorithm can be simply transcribed to the
following list of S-tuples;

(401,91, LR)
(911,490, 1,R)
(90> N> G0, A, L)
(41> A»q1, A, L)

Introduction Xiii

The second stage transcribes to

(qoalaqoa AaL)
(q1919q13/\’L)
(dos A5 dos A R)
(91> A>q15 AL R)

and the third stage to

(‘Io, Nsqs, 150)
(qla /\’quODO)

We cannot, however, simply list all the 5-tuples of the three stages if
we wish our TM to be deterministic and operate as we intend. We overcome
this problem by the introduction of new states. We keep ¢q,,q; for the
first stage, but use gg,q; for q,,q, in the second stage, and qj,q; for
qo,4, in the third stage. Our final program is thus

(40-1,91,1,R)
(ql, 1,‘10, laR)
((’IO’ A’qba /\’L)
(q17 /\’qu’ /\’L)
(90, 1,40, A, L)
(q,hl’q,l’ AsL)
(90, A» 40, A, R)
(qlla /\’qll,, /\aR)
(q‘g’ Nsd3, 1’0)
(qulv Aa‘lz’oso)

where q, is the initial state and g, is the only final state. We have thus
shown that even is a Turing computable function. In Fig. 0.4, we illustrate
the various configurations of the example TM as it processes as input of
x=111

We can also represent a TM program diagrammatically using a labelled
directed graph. We have nodes for each state g in Q. Then, for every
S-tuple (g,a,q’, b, X) where q, q' are states, a, b are tape symbols, and X
is one of L, R or 0, there is a directed arc from node g to node 4’ with
(a,b, X) as a label (see Fig. 0.5).

Represented as a labelled directed graph, our example TM program is
given in Fig. 0.6. The start state is indicated by an inward arrow to the
corresponding node, and final states by having their corresponding nodes
drawn in square boxes rather than circles. Such representations of TM

-1 0 1 2 3 4 5

—[naalo [[[A]A] ---
AN

execute (go,1, g1,1,R) m

= LD L] =
/N

then (g1,1, go,1,R)

LD L[] =
AN

then (go,1, g1,1,R)

LD L] =
/N

then (g1, A, g1/, AL)

LD] =
AN

then (g1',1, gx'",A,L)

— [afai [[aafA] ---

then (g1, q:",A,L)

L[[e[==

then(g:'.1,g+',AL)

=G —

then (", A, @', AR)

=L ==

then (g,",A, g2,1,0)

I I Y Y Y

then halt

Fig. 0.4.

Introduction XV

(a,b X)
q

Fig. 0.5.

(1,1 R)
o
/\HT_R)//H

(AN LY Y (AN L)
a0’ (1,A,L) a' (AL
(ANAR Y ¥ (A, A, R)
qo" a"
(A,1,0) (A,0,0)
q2
Fig. 0.6.

programs very often provide the greatest clarity. Hence, this will generally
be the way that these programs are presented in this book.

We will define Turing machines rigorously in Chapter 2 and, thereafter,
investigate their computing power. Firstly, however, we will need to
establish our mathematical notation.

Contents

Preface, vii
Introduction, ix

Mathematical Prerequisites, 1
Sets; Cardinality and Countability; Relations; Functions; Induction and Recursion;
Strings; Directed Graphs; Graphs; Godel Numbering.

Turing Machines, 36
The Formal Definition; Further Turing Computable Functions; A Non-Computable
Function; Multitape Turing Machines; Restricted Turing Machines.

Solvability and Unsolvability, 59
A Universal Turing Machine; The Halting Problem; Post’s Correspondence Problem;
Further Unsolvable Problems.

Formal Languages, 74

Turing Machines as Recognizers; Nondeterministic Turing Machines; Phrase
Structure Grammars; Context-sensitive Grammars; Context-free Grammars; Regu-
lar Grammars.

Recursive Functions, 98
Defining Functions; Primitive Recursive Functions and Predicates; Partial
Recursive Functions.

Complexity Theory, 123

Algorithm Analysis; The Classes P and N P; The NP-complete Class; A Sample of
Further NP-complete Problems; Number Problems and Pseudo-polynomial Al-
gorithms; Complementary Problems; The Polynomial Hierarchy; Space-Constraints;
Summary

Appendix: The Turing Machine Simulator, 168
Bibliography, 175
Index, 178

Chapter 1

Mathematical Prerequisites

But this book cannot be understood unless one first learns to

comprehend the language and interpret the characters in which it is

written. It is written in the language of mathematics...without

which it is humanly impossible to understand a single word of it.
GALILEO GALILEI

Il Saggiatore

In this chapter, we will survey the mathematics required to understand
the rest of this book. If this material is new to you, you should study it
carefully and make sure you understand all of the concepts. You might
like to supplement your reading with Chapters 1, 2 and 5 of the text,
Mathematics for Computing by McKeown & Rayward-Smith (1982). If,
on the other hand, the material is not new to you, this chapter can be
skipped through quickly, merely to ascertain the notation that we are
going to adopt.

SETS

A set is simply a collection of objects without repetition. Each object in
a set is called an element of that set. If the number of such elements is not
too large, then the set can be specified by listing its elements. For example,
if D denotes the set of days of the week, then

D = {Monday, Tuesday, Wednesday, Thursday,
Friday, Saturday, Sunday}.

The elements of a set defined in this way are separated by commas and
surrounded by the special brackets { and }.Generally, there is no implied
ordering of the elements of a set, so we could equally well have defined
D = {Monday, Wednesday, Friday, Thursday,
Sunday, Tuesday, Saturday}.

If an element, x, is a member of set, A, then we write xeA4 [read: x in
A] and if x is not an element of A4, we write x¢ 4 [read: x not in A]. Thus,

MondayeD

2 Chapter 1
but Kippers¢D.

Often, however, a set has a large number of elements and perhaps
even an infinite number of elements. In such cases the definition of the
set cannot be given by listing all its elements and some defining property
“has to be specified. An element, x, is then in the set provided that x satisfies
the defining property. A suitable defining property for the set D is

‘x is a day of the week’.

So, we could write
D = {x|x is a day of the week }

ie. D consists of all elements, x, that satisfy the defining property. A
another example,

P = {x|x is a prime number}

defines an infinite set of integers.
When defining a set in this way, care has to be taken to specify the
elements under consideration as the universe (of discourse). For example, if

X ={x|x>2}

then the precise nature of X can only be determined given the values which
x might take. For example, if x could only range over the positive integers,
X would be a different set from the case where x could range over all real
numbers. In the former case 2:1¢X but in the latter 2-1eX. Every set
under discussion will have all its elements contained in some specified
universe, %. Suitable universes in which X might be defined are the integers,
the positive reals, etc.

A particularly important set is the empty set. This set contains no
elements and is denoted by & or { }.

We say a set A4 is a subset of a set B, written 4 = B, if every element
of A is a member of the set B. If 4 is not a subset of B, we write A £ B.
Thus

{1,2,4} ={1,2,3,4,5}

but {2,4,6} £{1,2,3,4,5}.

It follows from the definition that
Asu

and ¢ < A for all sets, A4.

