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This book contains proceedings of the workshop on Adaptive Control Strategies
for Industrial Us;e, held at dl;odge Kananaskis, Alberta, Canada during June of 1988.
Over. 70 participants, 30 from industry and the remaining from aca;lenia, from 10
countries came  together. 20 of the 26 papers presented at this workshop are
published in this volume.

The objective of this workshop was to bring together engineers from industry
and scientists from universities to focus attention on new developmerzs ;ind
practical enhancements for using adaptive control im industry. The workshop was
held over a two at.\d one-half day period and provided a forum for a tutorial
introduction, through survey-type plenary sessions, to the state of the art in
adaptive process control. Attention was also focussed through technical sessions,
vendor demonstrations and panel discussions on the process control needs of industry
and the mechanisms -for transfer of current adaptive control technology between
academia and industry. .

Two panel  discussions were held during the workshop. The first panel
discussion was titled "Process Control Needs of the Indgst:rial Communi'ty".

Panelists from the petroleum, petrochemical, mining and pulp and paper sectors of

‘industry participated in the discussion. The general consensus was that while PID

control is suitable for a majority of loops, adaptive control is appropriate for
many ;‘lifficult loops in industry. 1In addition, lack of suitably trained personnel
was 1den£ified as the cause of slow technology transfer. The potential benefits of
adaptive feedforward control were stressed in this as well as the second panel
diséuss:lon. The second panel "d:lscu_'ssion titled "Is a General-Purpose Adaptive
Controller Feasible?” was held with several leading academics as panelists. The
answer to this question was a unanimous: "No" in the sense that a universal adaptive

controller was not only impossible but also undesirable. The discussion then
focussed attention on “What important features should the next generation ‘of

adaptive controllers have?” The answer to this question led to a long discussion
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with the main conclusion that a necessary requirement for a practical adaptive
controller is an intelligent supervisory system which would oversee the integrated
performance and tuning of the estimator, the controller and the appropriate signal
conditioning and filtering. The workshop ended on this positive note.

There are a number of people to whom we owe many thanks for making this a
successful meeting. Firstly, we would like to acknowledge the administrative and
secretarial hel:p we received through the Department of Chemical Engineering,
University of Alberta, and the Pulp and Paper Centre, University of British
Columbia, as well as the Conference Grants Committee at the University of Alberta
for partial financial support of this meeting. Finally, it is a pleasure to
acknowledge the help of our graduate students, who looked after the program

preparation, registration details, and audio-visual requirements at the workshop.

May, 1989 Sirish L. Shah and Guy Dumont
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SELF-TUNING MULTISTEP OPTIMISATION CONTROLLERS

David W. Clarke
Department of Engineering Science, Oxford University
Oxford OX1 3PJ, England

Abstract

The widespread demand for increased product quality and the growing use of high-throughput
energy-intensive plant means that alternatives to muilti-loop PID controllers must be investigated.
One significant approach, compatible with current powerful microcomputers, is multistep or long-
range predictive control. This uses a process model and an optimization algorithm to determine
the best set of future controls for achieving a desired closed-loop perfomance. The design of these
controllers depends on the choices of model, optimization method, and performance index, but
they have been applied successfully to a wide range of processes, including multi input/output,
constrained, dead-time, and multi-modal plant.

The paper discusses the basic philosophy of long-range predictive control, the criteria for se-
lecting an appropriate model structure, the choice of cost-function and its unconstrained and
constrained optimization. In practice the process model must be determined experimentally, lead-
ing to a self-tuned or adaptive design, and modifications to the standard recursive least-squares
parameter estimator are described. Of particular importance is the correct conditioning and fil-
tering of data, especially when handling unmodelled dynamics. The initialisation and industrial

application of self-tuned predictive control is outlined.

1 Introduction

Consider a spray-drying tower. A slurry is forced through a nozzle near the top of
the tower so that droplets fall through a counter-current flow of heated air to settle
as dried powder at the base. A ‘quench’ damper modulates the flow of heated air
entering the tower and an exhaust damper controls the rate of air extraction at the
top. The air flow through the tower is to be regulated: too high a flow entrains the
particles whereas if it is too low the drying action is insufficient. Tower pressure
must be set below atmospheric mainly for safety reasons: the operators might wish

" to open an inspection hatch. There is significant one-way interaction between the

variables, as tower pressure is affected by both flow dampers, and quite strong
nonlinearity: equally-spaced increments in the exhaust damper cause changes in
the pressure with gains varying by 5 to 1. The relatively fast yet simple dynamics
indicate a sample interval of less than 2 seconds. ' :
Preheated oil, mixed with recycled gas, is fed into a hydrotreater reactor where
the sulphur and nitrogen are converted to hydrogen sulphide and ammonia, and
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unsaturated hydrocarbons are saturated. The exothermic reactions are controlled
by the additior of cold quench gas between each of the reactor beds using valves
which must not be more than 60% open during normal operation. The control
objective, for this highly interactive process with complex dynamics, is to maintain
‘weighted average bed temperature’ at a set-point whilst minimizing energy costs
and ensuring that variables stay within prespecified limits. Measured disturbances,
usable as feedforward signals, are the variations in feed flow-rate and recycled gas
temperature. With a time to steady-state of 90 minutes and a sample interval of
3 minutes there are 30 samples over the plant’s rise-time.

A high-speed compliant link is found to have detectable flexure modes ranging
from 18Hz up to over 1kHz. It is controlled by a direct-drive DC motor and the
tip (end-effector) position is sensed by a light untorqued rigid link. The angular
positions of hub and tip are transmitted via shaft encoders to multiple microcom-
puters for feedback control. Variations of end-mass, such as when picking up a
load, modify the modal frequencies. The required path for the tip is predetermined
so that future values of reference are known. The link is designed for fast slewing
which inevitably involves torque saturation of the motor and requires a sample
rate of at least 60Hz.

The above are examples of typical high-performance control problems for which
classical approaches are unsuitable without a great deal of effort in design and
tuning. Yet they are all cases for which long-range predictive control (LRPC)
has been successfully applied to real plant: MIMO Generalized Predictive Control
(GPC) using a DEC LSI11 for the spray-dryer (Lambert,E., 1987); constrained
Dynamic Matrix Control (DMC) using an IBM PC-AT for the reactor (Cutler
and Hawkins, 1987); SISO GPC using twin Motorola 68020s for the flexible link
(Lambert,M., 1987). This paper develops the basic ideas of LRPC, discusses what
choices the designer has in achieving different performance objectives, and shows
how the methods can be used in practice. It concentrates on methods such as GPC
which can have a self-tuned or adaptive mode and for which there are theorems
to demonstrate the stabilization of unstable, nonminimum-phase plant.

A long-range predictive controller is a combination of the following basic com-

ponents:

o A model M(0) with which future plant ouputs y(t + j) can be predicted at
time ¢ based on assumptions about present and future controls. A good choice
of model structure is crucial for an effective LRPC design.

e Knowledge of the time-behaviour of the future set-point w(t + 7). If known
in detail, as in robotics or some batch process applications, these are called
preprogrammed set-points; otherwise a simple choice is to make the future
set-point have the known current value.

e A cost- or objective-function J(e,u) where e is the vector of future system-
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Figure 1: The structure of an LRPC loop

errors and u is the vector of appropriate controls. Important choices here
include the range of future errors to include in the cost (e.g. one possibility is
over the last half of the rise-time) and in the number of future control actions
to consider as contributing to the future response.

e An optimization routine which minimises J, either unconditionally (assuming
there are no constraints) or subject to known constraints such as control am-
plitude limits. The unconditional minimum can be derived analytically and
hence involves the minimum number of computations.

e (Optionally) various filters and transfer-functions added to the design to broaden
the range of performance objectives (e.g. closed-loop pole-plaéement) or to
improve.its robustness against practical inevitabilities such as unmodelled dy-
namics and disturbances.

The general structure of a long-range predictive controller is shown in Fig.1.
Clearly there are a large range of possibilities for each of the components de-
scribed above, so that very many distinct designs can be produced. Practical
considerations, however, restrict the freedom of choice: these points are discussed
in the following sections. . '

One of the most important questions is whether to choose full-value, offset, or
incremental signals as a basis of the design. Suppose internal calculations take
place using variables @, § representing the plant’s input and output, then we can
select:

Full-value : @(t) = u(t), so that if % is the result of the control computations its
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value is directly transmitted to the plant. Similarly §(t) = y(t) is used for the .
measured variable. ‘

Offset : #(t) = u(t) — uo, where ug is some predetermined mean-value which is
added to the algorithm output to obtain the transmitted control. Similarly
#(t) = y(t) — yo; here the mean-value can be obtained either ab nitio from a
steady-state reading or recursively by low-pass filtering.

Incremental : @(t) = u(t) — u(t — 1) = Au(t), where A is the backward-
differencing operator. Hence a design with #@(t) produces a control u(t) =
u(¢.— 1) + @(t). This is seen automatically to append an integrator in the
forward-path — clearly desirable in order to have zero offset against constant
load-disturbances. The internal variable §(t) is also given by the differenced
data y(t) — y(t — 1), being zero when the measured variable is constant.

There are many reasons why the incremental form is to be preferred. In self-tuning
or adaptive control the estimated model is generally a local-linearization about the
current operating point, but if the offset approach is used with constant [ug, yo]
these might not correspond to the correct values if the plant or its operating point
change. In the control calculation of LRPC future values of % are considered: one
reasonable assumption is that there is a control horizon beyond which the control
becomes constant and hence the corresponding increments are zeros. This means
that there are significantly fewer variables involved in the optimization, leading to
faster computations. This will be explored in more detail later.

There is one valid objection to the simple use of incremental data is that high
frequencies (where there will be noise and effects of unmodelled dynamics) are
emphasised. This is overcome by appropriate filtering (see later); indeed the offset
approach using a computed ug obtained by the low-pass filter:

iig(t) = Piio(t — 1) + (1 — B)ul(t),
gives an-jﬁternal:_ya.ria.ble t with overall high-pass filtering:
S . BA
= -l—_—mu(t),

i(t)

where ¢! is the backward-shift operator. This filter blocks low frequencies (from
the A operator) and has unit gain at high frequencies. Hence an incremental
formulation in conjunction with suitable filtering has similar behaviour to the
offset approach.

2 Choice of process model and output prediction

The purpose of a model is to predict the output response j(t + j) based on past
known inputs and measured outputs {%(t — 1); §(¢ — ¢)}, and depending on the
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additional effect of current and future controls. (Obviously if there are constraints
on the plant’s control actuation such as motor-torque limits these should be taken
into account as accurately as possible so that 4 reflects the &ctual value affecting
the plant rather than the possibly clipped demand of the LRPC algorithm). A
model can be thought of as having two aspects: its structure M(.) and its actual
parameter set {0}.

The derivation and computer implementation of an LRPC algorithm depends
on the assumed structure M. A ‘good’ design gives satisfactory answers to the
following questions:

e Can M represent a very general class of plants? For example, can it deal with
dead-time, unstable, lightly-damped, high-order systems simply by changes in
parameter values? If so, then an LRPC code would not need ad hoc modifi-
cations when applied to different problem areas.

o Is the number of parameters minimal with M still giving adequate predictions?
For then the computational burden could be minimised.

e Can prior knowledge be easily incorporated? This is particularly relevent to
adaptive algorithms: for example if in robot manipulation the only unknown
is the load mass a simple algorithm could be used to determine its value, and
bounds on likely loads could be prespecified as an error-check.

e Is there a realistic assumption about load-disturbances? Some algorithms at-
tempt to model these directly (which might be a fruitless exercise); most ap-
proaches make only implicit (and often unacknowledged) assumptions here. In
practice the minimal assumption is that there is a constant load-disturbance
(corresponding say to steady-state heat-loss or to constant load-torque) im-
plying that even with a zero control signal the measured output would be
non-zero. This is a further reason for insisting on offset or incremental mod-
els.

For any given application, associated with the structure are the particular pa-
rameters which need to be determined. This can be achieved by detailed mathe-
matical modelling or simulation, but more often direct experiments on the plant
are required. If the plant dynamics are reasonably time and set-point indepen-
dent, a prior exercise can provide once-and-for-all parameters. If they vary with
the set-point a series of related experiments could provide sets of parameters suit-
able for ‘gain-scheduling’. In general, however, variations can (in principle: more
difficult in practice) be handled by an adaptive algorithm which tracks changes as
reflected in the plant’s I/O behaviour. Hence acquiring good parameters involves
answering the following questions: ’

¢ Do I need to perform specific open-loop experiments on the plant or is ‘normal
operating data’ (such as with a closed-loop test) acceptable?
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® Must I inject a predetermined test-signal such as a step, or can other signals
be used?

e Should I/O data be prefiltered to accentuate the model fit over particular
frequency ranges?

o What is the effect of noise, nonlinearities, and unmodelled dynamics on the
quality of the model and the subsequent closed-loop LRPC behaviour?

e Will my estimator be able to track time-variations?

Details of parameter estimation are given later; here we simply note that parameter
estimation is simpler if M involves a minimal number of parameters.

The simplest general-purpose model is the impulse response or weighting se-
quence from which the output y(t) is derived by the convolution sum:

y(t) = 3> hault —1).

i=1
The only assumption here is superposition: the plant is linear with arbitrary
dynamics having parameters {h;} being points on its unit-pulse response. In prin-
ciple, however, there are an infinite number of parameters, so for implementations
there must be truncation after some point N, assuming [ = 0,7 > N]. This
model can be written in operator form as:

y(t) = H(q")u(t),
where H(g™') is the FIR polynomial:
H(g") =hig ' +hog? + -+ hyg™V.

The problem with FIR models is that they require a very large number of parame-
ters to represent stiff dynamic systems accurately. The sample interval k must be
smaller than the smallest time-constant of interest and the model ‘length’ must be
such that Nh exceeds the plant’s settling-time. A typical choice of settling-time
for overdamped dynamics is 5 times the largest time-constant: hence with only a
1:10 range of time-constants at least 50 parameters may be necessary.

A closely related plant representation is its step-response. Instead of taking the
input to be a series of pulses it is considered as a set of ‘moves’ or increments.
Superposition then provides the output:

y(t) = s;Au(t — 1) + s28u(t — 2) +-- - + s;Au(t —4) +-- -,

where the parameters {s;} are points on the unit-step response. Again s; must be
truncated at the point N where the response has settled, and previous moves are
assumed to provide an ‘initial condition’ yo, giving:

N
y(t) = yo+ X siAu(t —1).

=1
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Similar considerations about the numbers of parameters apply; indeed {h} and
{s} are related by the iterations:

50=0;si=6‘:’—1+h;, i=112)'-°N;
hi=s;—s;i.1=0A7s; i=1,2,...N.

Put simply, the step-response is the integral of the pulse-response. '
An alternative with a long history in self-tuning control is the difference-equation:

y(t) +ay(t—1) + axy(t-— 2) + - aney(t — na) =
biu(t —1) + byu(t —2) + - - - bppu(t — nb).

This is often called the DARMA (Deterministic AdtoRegressive and Moving-
Average) model, having the operator form:

A(g Ny () = B(g M)u(t),

where A and B are polynomials of degree na and nb in the backward-shift operator.
All the above model forms can be related by:

AS(g7") = H(g™") = A7 (¢7")B(¢7Y),

though note here that an n’th order DARMA model can give an exact representa-
tion of a stiff n’th order plant as it does not need truncation. In particular it can
emulate unstable processes which do not admit pulse- or step-response models.
It can also handle deadtime by appropriate changes to the order of the B(g™!)
polynomial: k samples of deadtime increases nb by k aad the leading k parame-
ters become zero. Hence in adaptive appli:ations where the deadtime might vary
one possibility is to use a relatively high order B and accept that some leading
or trailing coefficients might become insignificant. It is important here to ensure
that the controller design (such as the choice of horizons) is insensitive to these
changes: LRPC, unlike some approaches such as minimum variance, is acceptably
robust. ’

A SISO state-space model, giving access to extensive theoretical and algorithmic
results, is of the form:

x(t+1) = Ax(t) + bu(t)
y(t) = Tx(t).

It is interesting to note that if a unit-pulse sequence {1,0,0,...} is injected into
this model the response is given by:

{h} = {0,cTb,cTAD,...} = h; = cTA*" .

It is possible to convert directly from a DARMA model into state-space using an
observatle canonical form with n = max(na, nb) and:
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—a; 100 .-+ 0]
—a2010---0’

—-a, 000 --- 1

b = [bl;bZ: oo 7bn]T:
¢ =[1,0,0,...,0].

At some stage in an LRPC design some estimate of the states (which in general
are not directly accessible) is required, for which an observer of the form:

%(t) = A%(t — 1) + bu(t — 1) + k(y(t) — T%(t — 1))

can be used. It is possible, however, to define a nonminimal state comprising
simply of past inputs and outputs:

x(t) = [y(t),y(t - 1),...,y(t — na);u(t — 1),u(t — 2),...,u(t— nb))T.

In this case all elements of the state are accessible; moreover a state-feedback of
the form u(t) = kTx(t) gives a controller which can be immediately interpreted as
a transfer-function.

. There are many advocates for each of the model structures. A tentative (a.nd
possibly prejudiced) assessment is:

Impulse-response : Easy to formulate the corresponding LRPC designs. Stan-
dard PRBS/ crosscorrelation is usable for parameter estimation. Needs many
parameters for a good fit with stiff or lightly-damped dynamics, so adapta-
tion might be poor. Cannot be applied to unstable plant (unless stabilized by
inner-loop feedback). Some highly complex process dynamics might be han-
dled well: consider for example a plant with parallel paths having significantly
different dynamics. Significant truncation problem: how big should N be?

Step-response : As above: initial parameter estimation (reaction curve) e\}en
easier provided that there are no load-disturbances during the test. Its incre-
mental model formulation is more ‘natural’,

DARMA : Minimal parameterization. Can deal with dead-time, lightly-damped
and unstable dynamics. No fruncation problem. Need to choose two (na, nb)
rather than one (V) model orders (in practice choose na equal to the number
of ‘difficult’ poles and nb large enough to deal with the expected range of dead-
time). Must nse an algorithm (Section 4) for parameter estimation, though
there are simple results for obtaining second-order dead-time models from
reaction’ curves.



