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PREFACE

/

This volume contains the major part of contributions to the 4th Bad Honnef Conference on
Stochastic Differential Systems held at Bad Honnef, West Germany; June 20-24, 1988.Following the
tradition of the preceding Bad Honnef Conferences, the meeting was intended to highlight recent
advances in the areas of stochastic control and filter theory as well as stochastic analysis.

As sort of thematic ”domains of attraction”, special emphasis has been given to two rather
active fields of current research: the use of adaptive methods in stochastic systems analysis and the
theory of random fields. In view of the overwhelming flood of information accumulated in these two
areas in recent years, the most that could be hoped for at this conference was to offer a glimpse of
the status of research and to inspire interest and discussion in these fields. Several survey lectures
were intended to provide some introduction to the more mature parts of the theory for those less
acquainted with the subject, complemented by contributions that should give some taste of the
diversifying issues of current research both in theory and practice. We leave it to the reader to
judge how well this goal has been achieved.

It is a privilege of the organizing committee to express its gratitude to the Deutsche Forschungs-
gemeinschaft, whose generous support made this conference possible. We are also indebted to the
members of the International Advisory Committee; assisting us with many valuable suggestions
concerning program and speakers they have a substantial share in the success of the conference.
Last, but not least, our thanks go to the staff of the Elly-Holterhoff-Stift for their kind hospitality
as well as to G. Noldcke and A. Schiitt for their skilfull job in data processing for the conference
and in preparing this volume.

Bonn, February 1989 N. Christopeit
K. Helmes
M. Kohlmann
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Some Results on Newton Equation with
an Additional Stochastic Force

. S. Albeverio#
A. Hilbert

Fakultit fiir Mathematik, Rulir-Universitit-Bochum (FRG)
# BiBoS-Rescarch Centre, SFB 237 Bochum-Essen-Diisseldorf, CERFIM Locarno (CH)

Abstract

In this report, based on joint work with E. Zelinder, we discuss stochastic perturbations of
classical Hamiltonian systemns by a white noise force. We give cxistence and uniqueness results
for the solutions of the equation of motion, allowing for forces growing stronger than lincarly at
infinity. We prove that Lebesgue measure in phase space is a o-finite invariant measure. Moreover
we give a Girsanov formula relating the solutions for a nonlinear force to those for a linear force.

. £ Illtroduction

The study of stochastic perturbations of classical dynmuical systems lias been developed in recont
years, however, the case of stochastic perturbations of classical Hamiltouian systems has beew
wugh less investigated on a mathematical basis, despite its great interest in applications (celestial
mechanics, vibrations in mechanical systems, wave propagation in solid state plysies ...). One
reason for this is the fact that the struciure of the classical flows themselves is much more com-
plicated. Orbits of very different long titne behaviour, in geueral cannot be separated iu finite
time intervals, stable and unstable behaviour being mixed, see e.g. [Ar], [Mo], and [Mo-Ze|. The
nature of the orbits depends on the dimension of (he system. For degrees of freedom exceeding
three the behaviour can vary between periodic motioa, and Arnold diffusion. Often the difficult
wathematically rigorous investigation-of the longtime behaviour, has been replaced by licuristic
numerical approaches, sce e.g. [Li-Lie].

Iu case the perturbation is stochastic, hence Lypically non smootl, aud under the restriction of one
degree of freedom, Potter [Po] (sce also Mckean [McK]) analysed nonlinear oscillators perturbed
by a white noise force, described by the cquations

ity (1.1)
v=K(z)4w

where K is the deterministic foree, - meaus time derivative, w is white noise (the derivative of
Brownian motion w(t)). Under assumptions on the force K(z) = =V'(z), V € C'(IR) being
attracting towards the origin, i.c. z - N (a) < 0, Potter proved the existence of global solutions
and results about recurrence and the invariance of Lebesgue measure deds under the flow given
in (1.1). Some of these results have been recently extended by Markus and Weerasinglre [MaW]
who also studied winding numbers associated with the solution process (z,v)" around the Mgm,
sce also [AGQ).
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Existence and uniqueness for solutions of highes (but finite) dimensional second order It equations,
as the systems of the type given in (1.1)'%hgve béen called by Borchers [Bo), have furthermore been
deduced by Goldstein [Go] for systems with globally Lipschitz continuous force K, and Narita [Na]
in case there exists a function, decreasing along the paths analogously to a Ljapunov function in
the deterministic theory.

The present paper is based on joint work with E. Zehnder [AHZ], to which we refer for more details
and further discussions. We shall study equations of the form (1.1) in the case where z, and v run in
IR®. In Section 2 we establish existence and uniquencss results for strong solutions of the equations,
under assumptions on I which are of the type K(z) = —VV(z) for some V € C*(IR*),with either
a condition of the form V(z) quadratic or such that z - K(z) < 0 for |z| sufficiently large. Then
the solution process possesses the Markov property and continuous sample paths, furthermore it
depends continuously on the initial conditions.

In Section 3 we compare the solutions of the nonlinear system (1.1) with the ones of a corresponding
lincar system given by
dz = vdt

(1.2)
dv = —yzdt + dw

(w as above, and 7 a constant d X d-matrix with positive eigenvalues). This is done by establishing
a Cameron - Martin - Maruyama - Girsanov type formula for the Radon Nikodym derivative of
the probability measures. This result can be applied to prove some propertics which hold with
probability one for the nonlinear system by exploiting their vahdxty for the associated linear system
(see [AHZ],[H]).

In Section 4 we exhibit some features of the behaviour of the solution process of the nonlincar
system for large times. In particular, we give estimates for the energy functional for the process.
We introduce the generator of the diffusion, solving (1.1), and ensure its hypoellipticity (in the
sense that the occurring vector ficlds span the tangent space to phase space). By a Hormander's
type theorem we demonstrate absolute continuity of the transition probability w.r. to Lebesgue
measure vnt.hout further restrictions but continuity of the coefficient functions. Moreover we show
that Lebesgue measure is a o-finite invariant measure.

2. Existence and Uniqueness of the Solution
We cqnsjdcr » Hamiltoniad System with corresponding Newton equation
d d . :
-Jt-m(t) =v(t), Ev(t) = K(z) (2.1)

where t € IRy is time, «(t) is position in IR? at time ¢, v(t) is velocity at time ¢, and I\(:z) is
the deterministic force. The initial conditions z(0) = zg, v(0) =vg, (zo,v) € R2 are given.
Adding a white noise force w, we arrive at a system of stochastic differential equations in the phase
space random variable ¥ = (y(t) € IR*|y(t) = (2(1),v(t)), t = 0) of the form

) = BO)t +odi, 0) =0 = (%) (22)

iyl (Iczii)z)))' %z (g (1)) 2 (:»'z)'

where ((be, ), Ae ® Fi, t 2 0) is a Brownian motion in R* issued from 0 at time 0, with inde-
pendent families of o-algebras (A,), and (F).

with



Theorem 2.1

Each of the following conditions is sufficient for the existence of pathwise unique solutions of (2.2)

for all t € R, ™>
Let a,8 € IR®, and R > 0 then there exist constants Cy,Cz > 0, where C; depends on R, such

that
a) 1) |[K(a) = K(B)| < Ci |a - B Viol, 18] < R
2) |K(a)| < Ca(1+ |al) Va € ",

b) 1) a — K(a) is a locally Lipschitz continuous function. Moreover,
2) Ford>1: K(a)=-VV(a) for some V € C'(RR?)
3) (a—=z¢)K(a)<0 Va € R?, for some zo € IR®.

Proof: '
a) Statement a) is proven by a stochastic version of the Picard-Lindeléf method of iteration, see
e.g. [Mc K] (Cor 6.3.4 ).
b) Ford =1 the statement (b) is a special case of a result of Potter[Po] sce e.g. [Mc K], [Na 1.

We give a proof valid for d > 1 which uses a process which adopts the part played by the Ljapunov
function in the deterministic theory. Let us introduce the energy functional

1
W(y) =5 b’ + V() = V(o). (2.3)
From condition 4)2), i.e. (a—zo)-N(a) = — |a — o a—:‘-&-'i)-, where 'a%%[ is the derivative of V along
the direction (@ — z¢), we conclude

la—zo|
V(a) = V(x) - /o l%l (B~ K(B + z0))d|B] = V(o) § (2:4)

where we also used assumption 4)3).
For the energy functional in (2.3) this implics

W(s) > 3l (25)

and ;
lo - VW (u)I* = of* < 2W(v).
Since f is locally Lipschitz continuous, according to [Na 2], and [Ik-Wa], therc exist local solutions
Y.
Let us introduce stopping times

on =inf{t 20| y(t) 2 n}An

of the process Y = (y(1),t 2 0), t < oy, and define the cxplosion time e(yo) of Y for given initial
condition y(0) = yo, by
e(yo) = sup on P ae. (2.6)
neN

For n — oo the local solutions converge a.c. Lo the solution of (2.2), cf [Na 3]. The cxistence of a
global solution Y with initial condition y(ty) = yo is equivalent to an infinite explosion time e(yo),
i.e.

P(Ny,) = P({c(yo) < 00}) =1 2.7



with
Ny, = {c(yo) < 00, and  lim |y(¢)| = +o0}). (2.8)
t/el(yo)

At times before any explosion can possibly occur we can reexpress the energy functional W (2.3),
applying Ito's formula to its differential, by

W(y(t) = W) + / o{s) - du(s) +ds . (2.9)

Let us set A
r(t) = / [o(s)[? ds (2.10)
0

and L

alt) = /0 B} sl (2.11)

Then a(t), with filtration Fp(y) and with a clock running according to the time 7 is a new Brownian
motion. Under the assumption of Theorem 2.1b) a global solution of (2.2) is established due to
(2.7) by the following

Lemma 2.2

Under the hypothesis of Theorem 2.1b) we have
P(e(yo) = +00) = L.

Proof:

The proof of the higher dimensional statement can be reduced to the one for the one dimensional
case in [Po] with y being replaced by |y|. The proof is by construction, distinguishing the cases
7(e(yo)) < oo and 7(e(y)) = oo, and using the sample path properties of the Brownian Motion a(-).
Thus the a.s. finiteness of |y(2)], where tg < £ € ¢(yg), in deduced, which yields the contradiction.

E

We are left with the proof of uniquencss
a) This casc is covered c.g. by [Fr].
b) This case follows from [Tk-Wa], (Theorem 3.1), since the cocficients of the equation (2.2) are
in particular locally Lipschitz continuous. This yields uniqueness for ¢ € [0, e(yo)(w)]. Siuce
c(yo)(w) = oo a.s. , by the first part of this theorem, pathwise uniqueness holds for all ¢ > 0.

Remark 2.3

The statement of the theorem holds for £ > ¢y with initial condition y(ts) given. Furthermore, the
condition b3) may be generalized to

b3') There exists a constant r > 0 s.l. (o — ) - N(a) <0 for |a —ag| =

In fact the result on pathwise uniquencss is left untouched, in case we are able to establish the
existence of a global solution. Proceeding as in the proof by contradiction of Lemma 2.2, as-
sume that with probability different from zero e(yp) < co. Then for w s.t. e(yo)(w) < oo, and
7{e(y))(w) < oo, the part showing boundedness of the configuration variable x(t) for ¢ € [0, e(yo))
does not involve the force I, and therefore remains unchangad. Splitting the integral in the expres-
sion for V{z(1)) in (2.4), and inserting the solution of (2.2) we receive a nonnegative contribution,

|e(t)=xo]
[0 @ K+ 2o (2.2



plus a term

G / B (B K (B + x0))d B (213)

with § = [2(t) — xo| A r which is bounded for ¢ € [0, ¢(yo)), since I is a continuous function. We
can estimate the uorm of the momentum v, using the energy process, by

(O < 2(W(yo) + .1% +Cr + a(r(t))) (2.14)

This yiclds the boundedness of the process Y in case the random time 7 stays finite. In case
7(e(o,y0)) = oo the force is not involved in proving boundedness of the phase space process Y. So
the same argument as in the proof of Lemma 2.2 applies. |

Remark 2.4

Let us look at some analytical properties of the solution of (2.2). We observe that by setting
z = v(t) — w(t) we achiecve a C! - (in time) solution (z,2z) of the system of stochastic differential
cquations §

: z =2(t) + w(t)
K(x(t))
which is equivalent to the system given in (2.2), Since the Brownian motion (w(t)) possesses Holder
continuous paths of index < % we have local in time solutions to which the thcory of systems of
ordinary differential equations can be applied. Finally. we easily find continuous dependence of the
initial data for the solution of (2.2).

Theorem 2.5

Let K(a, 1) be a continuous function of a, p satisfying a local-Lipschitz condition i lll a, uniformly
in g, for p a parameter in qomc open connected domain in IR* of the form {u € R¥| |p— py| < ¢}
for some ¢ > 0, po € IR*. Consider the unique solution (2.2) for t > tg in a bounded domain
D of IR** with initial condition Yo = Y(lo), and coeflicient K(a, p). Let us call y(#, 1,10, yo) the
solution, then the mapping j1 — y(1, 1, to, y0) is a.5. continuous. We also have

(2.15)

z

lim Y, 1ty tu, o) = ylt, froy Loy o)

uniformly over every compact (t y) -set.
The mappings yo — y(t, i1, to, yo), and o = y(t, i1, t0,y0) are locally prsclntz continuous.

Proof:
Since there exists a pathwise (unique) solution of (2.2) this follows from results on ordinary differ-
ential cquations, sce c.g. [Am] (Theorem I1.8).

3. A Girsanov Formula

In this section we shall answer the question whether almost sure properties about the solution
to non lincar stochastic differential cquations can be reduced to ones of some Gaussian process.
Morc precisely, we shall investigate whether the probability mcasure associated with the solution
= (y(t) = (2(t),v(t)), t > 0), y(to) = yo of the stochastic differential equation (2. 2), is abso-
lutcly continuous with respect to the probability measure associated with the process given by the
stochastic differential cquation
dny (t) = a(n)dt + odiw, (3.0)
with g = (}), a(y)= (_4.), where 7 is a positive constant 2d x 2d matrix, and vice versa, This
amounts to deriving a (Camcron-Martin-Maruyama-) Girsanov formula relating the probability
measures.



Lemma 3.1

Let K,V be asin Theorem 2.1 and let ¥ be the corresponding solution of (2.2). Then for W
defined as in (2.3) we have

DEW () = EW(w)+dy

D E(Wo0)7) =BEWw?) +3 [ BEWue)ds+] [ Bwer) s

Proof:

Statement ) follows from 2.9 by taking expectation and usmb that fu v(s) - dw(s) s a mxu'tmga]c
with expectation zero.

ii) For any F € C? (IR), we have, using Ito formula successively, for all ¢ > 0

F(W(y(f)))=F(W(yo))+/" F' (W (y(s))) v(s) - dw(s)+
3 | P (W) + )P E” (W () &

Inserting F () = A?,€ IR, we get the equation ii) of the lemma.

Lemina 3.2

Let I¥ be as in Theorem 2.1 and let x(t) be the space componcnt of the solution y(2) = (z(t),v(2))
of (2.2). In the casc of hypothesis 2.1b assume furthermore that for all « € IR" and some constant
>0

[K(a)l* £ C(IV(a) = V(zo)I* +1).

Then the stochastic integral ,
/ K(z(s)) : dw(s)

defines a square integrable martingale w.r. to the filtration (Gi),5o = (A ® Fi) 5o, Which has zero
expectation.

Proof:
On Wiener space 2 over IR** we are given the stochastic integral

t ] ~ -
/., Bly(s)) - odii(s) = / K(a(s)) du(s). @1)

a) For the assumption of Theorem 2.1a), i.e.’ for a lincar growth condition, the statement of the
Lemma follows by Gronwall’s theorem, see [Am)] (sce also e.g. [Ik-Wa),[Lip-S],[McK]).

b) Now we turn to the case of assumption 2.1b in Theorem 2.1. Using V (z(t)) — V (z0) 2 0, and
. the definition of the cnergy function W (2.3), we get according to Lemma 3.1

d+1

B(vew -veor) < B (1) + 4L Mpw oo (33)
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Froni the growth condition on K and (3.3) we deduce
d+1
B (K )P < [or+ / BOW (o) &] (34)

with C, = (E ( ) Inserting in (3.4) the expectation JE (W (y(s))) expressed in Lemma 3.1 we
find .
E (/ ”\' (1‘(8)) lzd#) S pit +p2t1 + p;ts = P;;(t) (35)
0

M d+1 I(d+1)
m=CE(W(w), r2=C——E(Ww), p=C-7—

As in part 1) the statement of tlic lemuna follows since by (3.1) combined with the estimate in (3.5),
fot IV (z(s)) - dw, represents the stochastic integral of a nonanticipative function (in L3(, IP)),sce
c.g [Ik-Wa] (p. 48) or [Lip] (p. 97). In particular we have a martingale, with zero expectation (as
scen from its form).

n

In order to prove the existence of a density of the probability on path space for the nounlinear
solution w.r.t. the one corresponding to the lincar system, we need the following special case of
[Do].

Lemma 3.3

Under the assumptions of Lemma 3.2 the following estimate holds:

t
E (/ |ya(t) + 1\'(:!(!))|2) dt < o0,
0
where 7 is a d % d matvix.

Proof:

a) We treat separately the cases a), b) corresponding to the assumptions 2. la, 2.1b in Tbcoxcm
2.1. By Schwarz's inequality and the growth assumption on I

lya(t) + K (2(t) [* < 2(203 + (2CF + C4)le(t)]?) (3.7)
with €. the norm of 7.
Replacing 2(t) = z¢ + j;: v(s)ds, it follows agaiu by Schwarz’s inequality

Jz(t))* <2 (]:c.,l2 + t/‘; Iv(s)lzds) - (3.8)

Using v(s) = vy + fo' K (x(w)) du + fo. dw, and the independence of vy of the rest, we get applying
Ito’s formula, taking into account a2) and the fact that the martingale in Lemma 3.2 has zcro
cxpectation:

E (Ju(s)]?) < E (| /u‘ K (a(u)) (ln|2) + 3% + IE (|vol*) . (3.9)

Combining (3.8) with (3.9) and applying Schwarz’s inequality we arrive at the following cstimate
for the r.us. of (3.7)

B (Jz(t)?) <2 (113 (lzo|?) + 2B (Jvo|*) t* + C3E (/‘ 201+ |x(u)|’)dh) + %t‘)
{ : :
< Ci(t) + Ca(t)IE ( /0 |.t(u)|2(h)
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with Cy(2) = 2IE (|ro[?) + 2IE (|vo]?) £ + 1t + 2C3tY, and Cy(t) = 2C3t
Using Gronwall-Lemma (sce e.g. [Am]) in the variable IE(|x(2)|*) we arrive at

B (Ja(t)) < Ci(t) + Cs(t) (3.10)

with C3(f) a smooth function of ¢, bounded for ¢ > 0.

From (3.9) and (3.10) we deduce the estimate required in statement a)of the Lemma, namely for
0<t<oo:

E (/Dl |va(s) + K (z(s)) I’ds) <C(t) <o (3.11)

with C(t) = 4C3t + 2(2C3 + C,) [, [Ci(s) + C3(s)) ds.

b) Let K fulfill the conditions of Theorem 2.1b). Analogously to the first step in (3.7), we split the
squared norm by Schwarz's inequality. Integrating, and taking expectation in a second aud third
step yields :

E ( / [ya(s) + IS (2(5)) l"as) <2 / (E (Iya(s)I* + I (1K (2(3)) [*))) ds. (3.12)
o o

We have to estimate the linear and noulinear term separately. Since the explosion time is a.s.
infinite, combining (2.8) and (3.8) we get

|E (\mo-/o v(s)ds) | g/ﬂ (IB)egu(s)]) ds < (Elmulz)%/“. (]E(W'(.c)))%ds ="P(t) (3.13)

where P(t) is a polynomial of degree 3 in #3.
Then for all ¢

E/o' le(s)Pds SCAIE (feol?) + 2/0' [s /0 (E(W(yu)) + gu) e 2P(.«)J s,

which is a polynomial Py(t) of degree 4 in ¢. Collecting the estimates given in (3.4) and (3.13) we
find

t t
E (/ [ye(s) + K (2(s)) |2ds> < 2/ (Pa(s) + Pa(s)) ds < oo. (3.14)
0 0

This finishes the proof.

Remark 3.4

It looks tempting to try to use the estimate in Lemima 3.3, and the assumptions on I to chieck
Novikov’s condition E(cap( % fo‘ Jya(s) + K (x(s))]?)) < oo, sufficient for Girsanov’s theorem below,
to hold. In reality, this is not possible in our situation, However, it is possible to check that
othier types of sufficient (and neeessary) conditions for Girsanov’s theorem [Lip-S] hold under the
conditions of Theorem 2.1, sec [AHZ],[H] for a detailed proof.

Theorem 3.5

Let ¥ with initial data 'y be the global solution of the nonlinear stochastic differential equation
(2.2) with I satisfying the assumptions of the existeuce and uniqueness Theorem 2.1, and the
growth condition of Leinma 3.2.



