A SOFTWARE
TOOLS SAMPLER

||Mimlm |

Prentice-Hall International Editions

|
lI

WEBB MILLER

TF3I :
Mé> 8863954

LT

E8863954

A S0FTWARE
TOOLS SAMPLER

WEBB MILLER

Department of Computer Science
The Pennsylvania State University
University Park, Pennsylvania

H"ﬁ Prentice-Hall International, Inc.

Library of Congress Cataloging-in-Publication Data

MiLLER, WEBB
A software tools sampler.

Bibliography: p. 340

Includes index.

1. Computer software. 2. C (Computer program
language) 3. UNIX (Computer operating system)
I. Title.
QA76.754. M55 1987 005.36'9 86-30234
ISBN 0-13-821984-2

Editorial/production supervision
and interior design: Theresa A. Soler
Manufacturing buyer: Ed O’Dougherty

This edition may be sold only in those countries to which it is
consigned by Prentice-Hall International. It is not to be re-exported
and it is not for sale in the U.S.A., Mexico or Canada.

© 1987 by Prentice-Hall, Inc.
A Division of Simon & Schuster
Englewood Cliffs, New Jersey 07632

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America
10 987 65 4321

ISBN 0-13-4&21984-2 025

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Prentice-Hall of Southeast Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro
Prentice-Hall, Inc., Englewood Cliffs, New Jersey

A SOFTWARE
TOOLS SAMPLEE

.
* e
8 (] y
(21 . .

PRENTICE-HALL SOFTWARE SERIES
Brian W. Kernighan, Advisor

-
:’.#

PREFACE

This book contains a small ensemble of useful and interesting software tools—
programs that help you prepare documents and programs on a computer. Each
tool’s capability and construction are discussed in detail and enhancements are
outlined. After reading Chapter 1 (at most an hour or two if you already know the
C programming language) you can go directly to any chapter of interest.

You should get copies of the programs, experiment with them, and change
them to suit your needs. All programs listed in this book are available for a nominal
charge. For information write:

James F. Fegen, Jr.

Executive Editor

Technical +Reference Division
Prentice-Hall, Inc.

Englewood Cliffs, N.J. 07632

The book’s prerequisites are

® Programming experience and a familiarity with systematic methods for pro-
gram development, such as top-down design.

® Experience with data structures equivalent to an undergraduate course on the
subject. The terms pointer, hashing, binary search, and dynamic storage
allocation should be completely familiar to you.

e Knowledge of, or willingness to learn the C programming language.

vii

viii Preface

While the tools provide capabilities available from the UNIX' operating system,
the code is new and UNIX is mentioned only superficially.

The book is a text on software tools. Initial versions were written at the
University of Arizona, where the tools course is the first of three upper-division
undergraduate classes covering computer system software. The other two classes
treat programming systems (compilers, linkers, and debuggers) and operating sys-
tems. One of the purposes of this book is to teach about a major category of system
software.

The tools course has an additional distinctive goal. It provides many students
with their main exposure to complete and realistic software. Earlier courses exhibit
only programs that can be built in a day (or an hour) and later ones often construct
only toys for programming projects.

Besides use for a software tools class, this book might serve as a building
block for a software engineering course. A text such as Principles of Software
Engineering and Design by Marvin Zelkowitz, Alan Shaw, and John Gannon
(Prentice-Hall, 1979) could introduce general software engineering principles, with
examples and programming projects drawn from this book.

A third use is for self-study by a well-prepared and dedicated reader. Such
a reader might want to turn a non-UNIX system into a more pleasant and produc-
tive place to work or might just be curious to see how these software tools can be
built.

I have followed in the footsteps of the book Software Tools by Brian Ker-
nighan and P. J. Plauger (Addison-Wesley, 1976), which was used for years in
the tools class at the University of Arizona. Progress in computer science and
improved preparation of the entering students led me to cover substantially more
complex tools and to use a different programming language. The resulting class
notes became this book.

My sincerest thanks go to Dave Hanson, Gene Myers, and Titus Purdin for
reading drafts of this book and offering countless suggestions.

Webb Miller

TUNIX is a trademark of Bell Laboratories.

CONTENTS

PREFACE

INTRODUCTION

1.1
1.2
1.3

Getting started 2
Abstract data types 22

Isolating system dependencies 36

A FILE UPDATING TOOL

2.1
2.2
2:3

A general approach to file dependency 44
A closer look at the update algorithm 59

Storing the dependency information 77

FILE COMPARISON PROGRAMS

3.1
3.2
3.3

Using append and copy instructions 91
Using insert and delete instructions 100

Programming project: a version control system

122

vii

43

20

vi Contents

4 PATTERN MATCHING 142

4.1 Efficient scanning for keywords 145
4.2 Regular expressions and expression trees 154
4.3 Finite-state machines 173

4.4 Matching a regular expression 180

5 A SCREEN EDITOR 197

5:1 Addresses 204

5.2 Operators and the yank buffer 223

5.3 Remaining commands 234

5.4 The keyboard 255

5.5 The buffer module 262

5.6 The screen manager 280

5.7 The screen 316

5.8 Additional programming assignments 324

APPENDIX
A REQUIRED FUNCTIONS AND MACROS 332

A.l Standard I/O Library 332

A2 Standard String Functions 336

A3 Character-Classification Macros 336
A.4 System-Specific Functions 338

AS An Implementation of the Standard String
Functions 339

BIBLIOGRAPHY 340

INDEX 342

INTRODUCTION

Some basic material should be mastered before studying programs in later chap-
ters. Accomplished C programmers can extract the necessary information from this
chapter in one or two hours. Others should allot substantially more time and be
prepared to consult other sources.

Reading the later programs requires a knowledge of C. This book does not
provide a complete language description; for that, you need a book on C. The C
Programming Language by Brian W. Kernighan and Dennis M. Ritchie (Prentice-
Hall, 1978) is an authoritative introduction, and A C Reference Manual by Samuel
P. Harbison and Guy L. Steele, Jr. (Prentice-Hall, 1984) is an excellent resource
for experienced C programmers.

Section 1.1 is essentially an ‘‘entrance examination’’ on C: when you un-
derstand the programs given there, read the rest of the book. Of course, newcomers
to C will become fluent in the language only after completing several programming
assignments from Chapters 2 to 5. Even C experts should look at Section 1.1,
since it outlines the book’s basic assumptions about the C programming environ-
ment.

The remainder of this chapter covers two C programs that lie midway, in
terms of size and complexity, between the trivial programs of Section 1.1 and the
programs in Chapters 2 to 5. The main goal is insight into the large-scale structure
of the later programs. Readers unfamiliar with C may benefit from studying the
code in detail.

The programs of Sections 1.2 and 1.3 illustrate the importance of the *‘de-
cision hiding principle’’: a program’s structure should confine the effects of each
implementation decision to a small, easily identified section of code. Software

2 Introduction Chap. 1

conforming to this principle is easy to comprehend (and, hence, comparatively
easy to get working) because relatively few implementation decisions must be
grasped to understand a given module. Moreover, such software is easy to modify,
since revising an implementation decision invalidates a minimal amount of code.
Indeed, the implementation decisions that seem most likely to be changed later
should be hidden with particular care.

Section 1.2 introduces abstract data types, an especially useful application
of the decision hiding principle. The general idea is to keep the bulk of the program
from directly manipulating an important data structure; instead, data access is re-
stricted to a few tightly-specified ‘‘access functions’’. Details of the specific data
structures implementing the access functions are hidden from the rest of the pro-
gram, and the data structures are easily changed.

Abstract data types are the key to understanding much of the large-scale
structure of later programs. Programs are often divided into manageable pieces by
encapsulating each main data structure in a distinct module, then treating those
modules as abstract data types. Typically, the remainder of the code can be mod-
ularized according to relationship to the data modules. For example, the code that
moves data from an input file to data module A becomes module X , the procedures
that access data module 4 and build data module B constitute module Y, and so
on.

Section 1.3 discusses decision hiding for system dependencies in programs.
Not all programs in this book are portable; some must be changed before they will
run under another operating system or on a different machine. To minimize the
work required to move a program, the nonportable code has been isolated.

1.1 GETTING STARTED

The short programs of this section provide a natural introduction to software tools.
The first group of procedures is used throughout the book. The remaining programs
are complete and useful software tools.

1.1.1 Basic UNIX Command Syntax

In this section, and at isolated points in the remainder of the book, use of a
software tool is illustrated with the UNIX command syntax. Other command lan-
guages would have worked as well; the only purpose is to give a concrete idea of
what it feels like to use the tools. The few properties of UNIX needed for these
examples are summarized below. The paper *‘The UNIX programming environ-
ment”” by Brian Kernighan and John Mashey (IEEE Computer magazine, April
1981, pp. 12-24) is a good source for learning more.

Under UNIX, the user can organize files into arbitrary groupings called di-
rectories. For example, the source files, object files, and executable file for a
program are often grouped into their own directory.

Sec. 1.1 Getting Started 3

UNIX programs are run by typing a line that contains the program name,
perhaps followed by a list of arguments that are separated by blanks. Arguments
often consist of file names or ‘‘flags’’ that select options. By convention, a leading
minus (—) character distinguishes a flag from a file name. For example, the com-
mand

¢ =0 thud.ec

applies the C compiler cc to the C source file thud.c, with the —O flag requesting
optimized object code. Another UNIX convention is that files containing C source
code have names ending with the two characters ’.c’’.

The UNIX command interpreter, called the shell, provides a shorthand no-
tation for specifying lists of file names. Specifically, in a command like

cc *.cC

the string *’*.¢”” is replaced by the list of file names in the current directory that
end in ”’.¢”’, i.e., all C source files. Thus, if the current directory consists of the
files foo.c, thud.c, and prog.docum, the command is equivalent to

cc foo.c thud.c

A second useful service of the UNIX shell is connecting the output of one
command to the input of another. For example, Is is the command that lists the
names of files in the current directory, and Ic (pp. 12-14) counts its input lines.
The UNIX command

ls | Llec

connects the output of Is to the input of /c, creating a command that counts the
number of files in the current directory (assuming that Is lists files one per line).
Two commands can be connected this way if the first writes standard output and
the second reads standard input. (The terms standard output and standard input
are discussed below.) A pipeline is a chain of simpler commands linked in this
manner by the shell.

1.1.2 Required Functions and Macros

Four classes of functions are assumed available. They are listed here for
quick reference, then discussed more thoroughly when first used. The Appendix
contains complete details.

Standard 1/0 Library. C statements for input or output are provided by
a “‘standard 1/0 library.”” Any source file using this library of functions should
have the line

4 Introduction Chap. 1
#include <stdio.h>

(or an #include line naming a file containing that line) near the beginning. The

library provides the following functions and macros, which the book’s programs

use for input and output. (The only exception is the fastfind program of Section

4.1, which uses system-specific input procedures.)

fopen(), fclose(), fflush() open, close, or flush an I/O stream

getc(), getchar() get an input character

gets(), fgets() get a string of input characters
printf(), fprintf(), sprintf() formatted output conversion
putc(), putchar() output a character

puts(), fputs() output a string of characters
rewind () return to the beginning of a file

As part of the I/0 facilities, the following macros are defined by the stdio.h
header file.

EOF an integer returned upon end of file

FILE the ‘‘type’’ associated with a file

NULL the null pointer (can point to a character or a FILE)
stderr FILE pointer for standard error file

stdin FILE pointer for standard input file

stdout FILE pointer for standard output file

All six macros are predefined constants; don’t try to assign values to them.

Standard String Functions. The following functions manipulate char-
acter strings that are terminated by a null character ("\0’). Strcat() and strcpy(),
the two that create a string, terminate the new string with a null character, but do
not check for overflow of the new string. In some C implementations, index() is
called strchr().

index(s, ¢) return the first location of the character c in s
strcat(s, t) append a copy of ¢ to the end of s

strcmp(s, t) return O if and only if s equals ¢

strcpy(s, t) copy tto s and return s

strlen(s) return the length of s

Character-Classification Macros. Files containing the line

#include <ctype.h>

Sec. 1.1 Getting Started 5
can thereafter employ character-testing macros from the list:

isalnum(c) cis one of ’a’-’z’, "A’-"Z’, or ’0’-’9’
isalpha(c) c is one of ’a’-’z’ or "A’-"Z’
isdigit(c) c is one of 0’-’9’

Al -

islower(c) c is one of ’a’-’z

isprint(c) c is a printing character (not a control character)
isspace(c) c is a space, tab, or newline character
isupper(c) c is one of "A’-"7Z’

For example, the condition
if (isspace(c))
tests whether c is a ‘‘whitespace’’ character.

System-Specific Functions. The following machine-dependent func-
tions are used; others are introduced in Chapters 2 and 5, as needed.

exit(n) terminate execution, signaling n to the parent process
free(p) free the memory allocated when malloc() returned p
malloc(n) allocate n bytes and return the address (NVULL signals failure)

1.1.3 Lib.c—A Library of C Procedures

Let’s begin our quick tour of C programs with seven procedures that are
used throughout the book.

Savename(). When commands can be combined in pipelines, it is desir-
able to know which of the constituent commands produced an error message. For
example, if the pipeline

ls | find | Lc
produces the message

Missing argument.

it is unclear which of the commands Is, find, or Ic was incorrectly specified; the
response

find: Missing argument.

is more informative.

6 Introduction Chap. 1

Most of the programs in this book begin execution with a call like:
savename ("find");

Any subsequent fatal error message will be preceded by the program’s name, a
colon (:), and a space.

#define MAX_NAME 50 /* maximum length of program or file name */
static char prog_name[MAX_NAME+11]; /* used in error messages *x/
/* savename - record a program name for error messages */
savename(name)

char *name;

{
char *strcpy();
if (strlen(name) <= MAX_NAME)
strcpy(prog_name, name);
X

Savename() invokes the standard string function strlen() to count the char-
acters in name. Another standard string function, strepy(), copies name to the array
prog__name(], where it can be accessed by procedures in lib.c (the file containing
savename()). Name is not copied if it is too long; prog__name/] can hold a 50-
character name plus the ‘‘null character’’ that C uses to mark the end of a string.

Strepy() is declared to be a function returning a character pointer, even though
the returned value is unused; some C compilers demand that the declaration be
present. C rules imply that strlen() returns an int since no declaration states oth-
erwise.

Fatal(). Fatal() is used to terminate execution because of an error condi-
tion.

/* fatal - print message and die */
fatal(msg)
char *msg;

{
if (prog_namel0]l '= '"\0')
fprintf(stderr, '"%s: ", prog_name);
fprintf(stderr, "%s\n", msg);
exit(1);
}

Fatal() appends a newline character to the message it is given, then calls the sys-
tem-specific function exiz() to terminate execution and make its argument (1 to
signal an error) available to the outside world. If savename() has deposited the
program’s name in prog__name[], then the name, a colon, and a space are printed

8863954

Sec. 1.1 Getting Started 7

before the message. On the other hand, if savename() has not been called, then
progname[0] is *\0’ (because global character arrays are automatically initialized
with null characters), so no program name is printed.

Fatalf(). Fatalf() works like fatal() except that the msg string can contain
a conversion specification, like %s.

/* fatalf - format message, print it, and die */
fatalf(msg, val)
char *msg, *val;

{
if (prog_namel0] = "\0")
fprintf(stderr, "%s: ", prog_name);
fprintf(stderr, msg, val);
putc('\n', stderr);
exit(1);
}

A typical use of fatalf() is:
char *name;
;;;alf(”Cannot open %s.', name);
which prints a final message of the form
Cannot open thud.c.
Although it violates programming etiquette and draws warnings from inter-

procedural analyzers like the UNIX lint program, programs in this book occasion-
ally make calls such as

int k;

fatalf("Improper line number: %d.", k);

I don’t know of any systems where the inconsistently typed second argument causes
Jatalf() to perform improperly. Of course, it is essential that the conversion spec-
ification match the second argument; for example,

int k;
fatalf("Improper Lline number: %s.'", k);

won’t work.

8 Introduction Chap. 1

Ckopen(). Sometimes there is no graceful way to recover from an unsuc-
cessful attempt to open a file. When the best contingency plan is to print a diag-
nostic message and terminate execution, programs can call ckopen().

/* ckopen - open file; check for success */
FILE *ckopen(name, mode)
char *name, *mode;

{
FILE *fopen(), *xfp;
if ((fp = fopen(name, mode)) == NULL)
fatalf("Cannot open %s.'", name);
return(fp);
}

Ckopen() needs both the name of the file and a mode telling the intended use
of the file. For example, setting mode to *’w’’ (the string, not a single character
'w’) informs the operating system that you want to write to the file. Ckopen()
employs the local FILE pointer variable fp and invokes the standard I/O function
fopen(), which returns a FILE pointer. The test

if ((fp = fopen(name, mode)) == NULL)

calls fopen() with ckopen()’s arguments, assigns the returned FILE pointer to fp,
then compares it with the NULL pointer. Unless fopen() signals failure by returning
NULL, the FILE pointer is returned to the calling procedure. If fopen() fails, then
ckopen() calls fatalf() with a diagnostic message.

Ckalloc(). A program can ask the operating system for a specified number
of bytes of storage by calling ckalloc().

/* ckalloc - allocate space; check for success */
char *ckalloc(amount)
int amount;

{
char *malloc(), *p;
if ((p = malloc((unsigned) amount)) == NULL)
fatal("Ran out of memory.");
return(p);
>

Ckalloc() calls the system-specific function malloc() to provide the storage.
If malloc() indicates failure by returning NULL, then ckalloc() calls fatal() to ter-
minate execution. Otherwise, malloc() returns a pointer to a free block of memory,
and ckalloc() hands that pointer back to the calling procedure.

