/ 7

1]
1

1101180080850

4

777

Vs

Z

Walter Savitch

Walter Savitch

University of California at San Diego

PROBLEM SOLVING WITH ++
The Object of Programming

SECOND EDITION

A
\A4

Addison-Wesley
An imprint of Addison Wesley Longman, Inc.

Reading, Massachusetts ¢ Harlow, England e Menlo Park, California
Berkeley, California e Don Mills, Ontario Sydney ¢ Bonn s Amsterdam
Tokyo * Mexico City

Acquisitions Editor: Susan Hartman
Production Editor: Amy Willcutt
Assistant Editor: Julie Dunn

Production Assistant: Brooke D. Albright
Composition: Michael and Sigrid Wile
Copyeditor: Roberta Lewis

Proofreader: Phyllis Coyne et al.

Cover Design: Arisman Design

Cover image © Akira Inoue/Photonica

Access the latest information about Addison-Wesley books from our World Wide Web site:
http://www.awl.com/cseng

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and Addison-Wesley was aware of a trademark
claim, the designations have been printed in initial caps or all caps.

The programs and applications presented in this book have been included for their instructional value. They
have been tested with care, but are not guaranteed for any particular purpose. The publisher does not offer
any warranties or representations, nor does it accept any liabilities with respect to the programs or applica-
tions.

Library of Congress Cataloging-in-Publication Data
Savitch, Walter J., 1943—
Problem solving with C++ : the object of programming / Walter
Savitch. — 2nd ed.
p. cm.
Includes index.
ISBN 0-201-35749-6
1. C++ (Computer program language) L. Title.
QA76.73.C153S29 1999
005.13'3—dc21 98-27261
CIP

This book was typeset in QuarkXpress 3.32 on a Power Macintosh 7500. The font used was Utopia. It was
printed on New Era Matte.

Reprinted with corrections, March 1999.

Copyright © 1999 by Addison Wesley Longman, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmit-
ted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without
the prior written permission of the publisher. Printed in the United States of America.

789 10-MA-02010099

Preface

This book is meant to be used in a first course in programming and computer science
using the C++ language. It assumes no previous programming experience and no
mathematics beyond high school algebra. It could also be used as a text for a course
designed to teach C++ to students who have already had some other programming
course, in which case the first few chapters can be assigned as outside reading.

If you have used the first edition of this book, you should read the following sec-
tion, which explains the changes to this second edition, and can skip the rest of this
preface. If you are new to this book, the rest of this preface will give you an over-
view of the book.

Changes to the Second Edition

This second edition presents the same programming philosophy and uses the same
outline of topics as the first edition. If you are an instructor already using the first
edition, you can continue to teach your course almost without change. However, this
second edition does offer an opportunity for adding topics to a course. This second
edition includes extra exercises, reworking of some sections to improve clarity and
correctness, and the introduction of some important new topics. The main additional
topics are the use of the type boo1 for Boolean values, the introduction of the string
class from the Standard Template Library (STL), and an additional concluding chap-
ter on inheritance. The type booT is integrated through the book. If you are using a
compiler that does not yet support the type bool, then Appendix 10 explains how
you can easily simulate the type bool on your system. Both the use of the string
class from the Standard Template Library and the additional material on inheritance
can be considered optional. However, it would be good to consider adding one or
both of these topics to your course, if they are not already included.

A Resource—Not a Straightjacket

Most introductory textbooks that use C++ have a very detailed agenda that an
instructor must follow in order to use the book in class. If you are an instructor, this

PREFACE

book adapts to the way you teach, rather than making you adapt to the book. This
book explains C++ and basic programming techniques in a way suitable for begin-
ning students, but it does not tightly prescribe the order in which your course must
cover topics and does not prescribe the specialized libraries, if any, that must be used
in your course. You can easily change the order in which chapters and sections are
covered without loss of continuity in reading the book. The details about rearranging
material are explained in the section of this preface on flexibility. Although this book
uses libraries and teaches students the importance of libraries, it requires no special
libraries. It was designed to be used with a “‘standard” C++ implementation and only
uses libraries that are provided with essentially all C++ implementations. Instructors
who wish to do so may use additional libraries of their own choosing.

Early Classes

There are at least two ways that a book can introduce classes early. A book can teach
students how to design their own classes early in the book or it can merely teach
them how to use classes early without defining them. This book teaches students to
define their own classes early and does not merely teach them how to use classes
early. In order to effectively design classes, a student needs some basic tools such as
some simple control structures and function definitions. This book thus starts out
covering these basics in Chapters 2, 3, and 4. It then moves immediately to classes.
In Chapter 5 file I/O streams are used to teach students how to use classes. In Chap-
ter 6 students learn how to write their own classes.

This book uses a measured approach to classes. It teaches students to write some
very simple classes, then adds constructors, then overloading simple operators, then
overloading the I/O operators << and >>, and so forth. This measured approach
keeps the student from being overwhelmed with a long list of complicated construc-
tions and concepts. However, one goal of this book is to get students writing realistic
class definitions,as. soon as possible, and not to have them spending time writing
classes that are ‘artificially simple. By the end of Chapter 8, students are writing
essentially the same kinds of classes that they will be writing when they finish the
course.

There are a few topics related to classes that are not introduced at the beginning.
Destructors, templates, and sophisticated use of inheritance are not introduced early.

Destructors are not introduced until dynamic data structures are covered. Intro-
ducing them before dynamic data structures would be pointless, since they would
have no purpose.

Templates are not introduced early for three reasons: First, many compilers still
do not handle them gracefully. With many compilers, class templates require special
care if they are to be compiled separately. Often compilation of class templates has
restrictions that make separate compilation impractical. Second, a template is a

PREFACE

schema that generates numerous nontemplate classes. Thus, before one can under-
stand what a template class is, one needs to know what a nontemplate class is. Once
a student is comfortable with nontemplate classes, template classes are an easy and
natural generalization. Third, many of the examples that benefit most from templates
are data structures, like stacks and queues, which are usually not covered until the
second programming course. However, if an instructor wishes to cover templates
earlier, the material on templates was written so that it can be moved to an earlier
place in the course.

Inheritance is covered briefly in Chapter 5 so that students become aware of the
concept. However, this book does not teach students how to write their own derived
classes until the final chapter of the book. The reason for this is that the examples
that strongly motivate inheritance and derived classes often do not arise naturally at
the beginning of a first course. One can make a point of introducing examples that
use derived classes early in the first course, but it is difficult for students to get much
realistic utility out of derived classes until they are more sophisticated programmers.
These more advanced topics can easily be introduced later, and even without these
topics students will have a sophisticated and realistic concept of classes. Chapter 15
does teach students how to define and use derived classes including the use of virtual
functions. Some instructors may choose to leave that material for a second course.
Other instructors will want to integrate this inheritance coverage into their course.

Even though we postpone the discussion of destructors, templates, and most of
inheritance, the classes that are used early in the book are very sophisticated, and
some would argue that they are too complicated to be covered so early in a first pro-
gramming course. After all, in addition to the basic notions of member variables and
member functions, beginning students reading this book will learn all of the follow-
ing topics very early: public and private members, function overloading, operator
overloading, friend functions, returning a reference so that they can overload the I/O
operators << and >>, constructors for automatic initialization, constructors for type
conversion, and a number of smaller issues. Some would argue that this is too much
to give students so early. We have class tested this material, however, and found that
the examples become unrealistic or poorly behaved if we omit any of these topics.
Moreover, in class testing we found that students respond to early classes in basi-
cally the same way that they respond to early functions. Certainly the material pre-
sents some problems. However, students are as capable of learning the material early
in the course as they will be later in the course. Moreover, covering classes early
leaves students with a better working knowledge of classes. Students have a strong
loyalty to the first technique they learn for solving a problem. So, if you want them
to really use a technique, then you need to teach it early. Moreover, classes are not
the hardest topic the students encounter. For example, classes are more intuitive and
better behaved than ordinary (C style) arrays, which they learn later in the course.

PREFACE

Having made the case for early classes, we are still aware that not everybody
wants to introduce classes as early as we do and so we have written the book to allow
instructors to move coverage of classes to later in the course. This is discussed in the
section of this preface on flexibility.

Summary Boxes

Each major point is summarized in a boxed section. These boxed sections are spread
throughout each chapter. This allows the book to be read in many different ways by
students with different backgrounds: Students with a good deal of programming
experience can use the boxed sections to learn the material quickly. Students who do
not adapt well to reading a full-length text can use the boxed sections to obtain the
major points and then read more of the text for points that still need clarification
after they have read the boxed sections and attended lectures. All students can use
the boxed sections to preview the chapter, to review for exams, and as a short refer-
ence to check points they may have forgotten.

Self-Test Exercises

Each chapter contains numerous Self-Test Exercises at strategic points in the chap-
ter. Complete answers for all the Self-Test Exercises are given at the end of each
chapter. This second edition includes a number of new additional Self-Test Exercises
that did not appear in the first edition.

Class Tested

The material has been fully class tested and revised in response to student and
instructor reactions. Among other things, this class testing helped in determining our
choice of which C++ concepts to include, which to omit, and which to place in
optional sections. Preliminary versions of this material have been used in classes
using a GNU compiler, in classes using a Sun CC compiler, and in classes using a
Borland C++ compiler. The program code was designed to be portable and should
work without modification on almost any C++ compiler.

Flexibility in Topic Ordering

This book was written to allow instructors wide latitude in reordering the material.
To illustrate this flexibility we give a number of alternative orderings of topics after
this paragraph. There is no loss of continuity when the book is read in any of these
orders. In order to ensure this continuity when you rearrange material you do need to

PREFACE

sometimes move sections rather than entire chapters. However, only large sections in
convenient locations are moved. Under any of these orderings, whenever a chapter is
first introduced, the chapter is covered without interruption up to some point. One
cut point is inserted into the chapter and all the material before the cut is moved as a
unit and all the material after the cut is moved as another unit. To help customize an
ordering to any particular class’s needs, the dependency chart, which follows this
preface, describes many more possible orders in which the chapters and sections can
be covered without loss of continuity.

Reordering 1: Late Classes

This version essentially covers all of an ANSI C course before going on to cover
classes. The only thing that is very C++ like before the introduction of classes is the
use of streams for I/O:
Basics: Chapters 1, 2, 3, 4, 5, and 7 (omitting Chapter 6 on defining classes).
This material covers all of control structures, function definitions, and basic
file 1/0.
Arrays: Chapter 9, omitting the last section (Section 9.4), which uses classes.
Chapter 10, omitting the last section (Section 10.2), which covers the STL
string class.

Pointers and Dynamic Arrays: Chapter 11, omitting the last section (section
11.3), which covers material on classes.

Recursion: Chapter 12, omitting the programming example on classes that
““ends the chapter. (Alternatively, recursion may be moved to later in the
course.)

Structures and Classes: Chapters 6, 8, and the last sections of Chapters 9, 10,
and 11.

Pointers and Linked Lists: Chapter 14
Templates: Chapter 13
Inheritance: Chapter 15

Reordering 2: Classes Slightly Earlier

This version covers all control structures and the basic material on arrays before
doing classes, but classes are covered a little earlier than the previous reordering.

Basics: Chapters 1, 2, 3, 4, 5, and 7 (omitting Chapter 6 on defining classes).

This material covers all of control structures, function definitions, and basic

file 1/O.

One-Dimensional Arrays: Chapter 9, omitting the last section (Section 9.4),
which uses classes.

vii

viii

PREFACE

Structures and Classes: Chapters 6, 8, and the last sections of Chapter 9.
Multidimensional Arrays and Strings: Chapter 10

Pointers and Dynamic Arrays: Chapter 11.

Recursion: Chapter 12.

Pointers and Linked Lists: Chapter 14

Templates: Chapter 13

Inheritance: Chapter 15

Reordering 3: Early Classes, but with
All Control Structures Covered before Classes:

This is almost the regular ordering of the book. You only need to move Chapter 7 so
that you cover Chapter 7 before Chapter 6.

Variations:

The first two sections of Chapter 12 (which cover basic recursion) can be covered
any time after Chapter 4. The first two sections on pointers (in Chapter 11) can be
covered before Chapter 10, which covers multidimensional arrays and strings. Most
of the first section of Chapter 13, which covers function templates, can be covered
anytime after Chapter 4. The first two, sections of Chapter 15 (15.1 and 15.2) which
cover the basics of defining and using derived classes can be covered any time after
Chapter 10. Other possible variations are shown in the dependency chart at the end
of this preface.

Support Material
The following support material is available from the publisher:

Programs from the Text: All the programs in the text are available by anonymous
ftp at ftp.aw.com. At the name prompt enter anonymous. The programs are in the
directory cseng/authors/savitch/psc++2e.

Alternatively, you can find the programs by going to either the Addison Wesley
Longman Web site or the author’s Web site and following the links. The two Web
sites are, respectively:

http://www.awl.com/cseng

http://www-cse.ucsd.edu/users/savitch/

PREFACE

Instructor’s Resource Guide: A chapter-by-chapter instructor’s guide including
numerous teaching hints, quiz questions with solutions, and solutions to many pro-
gramming exercises.

Contact your Addison Wesley Longman sales representative for details on
obtaining the instructor’s guide. If you wish to have an Addison Wesley Longman
sales representative contact you, send e-mail to aw.cse@aw].com.

Email Confact

I would very much like to hear your comments so I can continue to improve this
book to make it better fit your needs. Feel free to contact me at the following e-mail
address:

wsavitch@ucsd. edu

Unfortunately, I am not able to provide students with solutions to exercises in
this book or to other exercises provided by your instructor. I simply do not have
enough time to answer the numerous requests I am getting for such detailed assis-
tance. I also do not want to interfere with any instructor’s plans for how students
should go about solving programming problems. As at least a partial consolation to
those who desire such help, let me point out that the book does include complete
answers (o all the Self-Test Exercises. Also, the Instructor’s Guide does provide
instructor’s with some answers to Programming Projects, but that material is only
available to college and university instructors who adopt the book, and it cannot be
given out to students.

Acknowledgments

Numerous individuals and groups have provided me with suggestions, discussions,
and other help in preparing this textbook. Much of the first edition of this book was
written while I was visiting the Computer Science Department at the University of
Colorado in Boulder. The remainder of the writing on the first edition and the work
on this second edition were done in the Computer Science and Engineering Depart-
ment at the University of California, San Diego (UCSD). I am grateful to these insti-
tutions for providing facilities and a conducive environment for teaching this
material and writing this book.

David Teague deserves special acknowledgment. I very much appreciate his
hard work, good insights, and careful rewriting of many sections of the book. This
second edition could not have come out in a timely fashion without his help. He
assisted in updating much of the text to reflect the new type booT and other updates

PREFACE

in the C++ language. He was, as a practical matter, a coauthor of the new Chapter
15, which covers inheritance.

The list of other individuals who have contributed critiques for earlier outlines
and drafts of this book is too long to thank each contributor in the unique way that
she or he deserves. So I must simply list them (in alphabetical order) and extend my
deepest thanks to them all: Claire Bono, Andrew Burt, Karla Chaveau, Joel Cohen,
Doug Cosman, Paulo Franca, Len Garrett, Jerrold Grossman, Dennis Heckman, Bob
Holloway, Bruce Johnston, Thomas Judson, Michael Keenan, Barney MacCabe,
Steve Mahaney, Michael Main, John Marsaglia, Nat Martin, Jesse Morehouse, Lt.
Donald Needham, Dung Nguyen, Ken Rockwood, John Russo, and Jerry Weltman.

I extend a special thanks to the many students in my classes who tested and
helped correct preliminary versions of this text. Their feedback, and the comments
of other instructors who used early drafts of this book, provided some of the most
helpful reviewing the book received. In particular, Id like to offer a special thanks to
Joe Faletti, Paul Kube, Susan Seitz, and David Teague for their valuable feedback
after class testing material from the first and second editions of this book.

I again thank David Teague. This time for his excellent work in preparing the
instructor’s guide.

I extend a special thanks to Carter Shanklin, my editor for the first edition of this
book. His support and advice was invaluable in shaping the basic design of the book.
I thank Amy Willcutt and Julie Dunn for their excellent work in handling production
and reviews under very tight time constraints. Finally, I thank my editor Susan Hart-
man who provided the reviewers, and the encouragement that allowed this second
edition to be produced in a timely fashion. The various pieces would not have come
together without her expert guidance.

W.S.
http://www-cse.ucsd.edu/users/savitch/

Dependency Chart

The dependency chart on the next page shows possible orderings of chapters and
subsections. A line joining two boxes means the upper box must be covered before
the lower box. Any ordering that is consistent with this partial ordering can be read
without loss of continuity. If a section number or section numbers are given in a box,
then the box refers only to those sections and not to the entire chapter.

-
_

Chapter 6
Classes 1

T~

PREFACE

Chapter 1

Introduction

I

Chapter 2

C++ Basics

Chapter 3

I B

Functions 1

l

Chapter 4

Functions 2

[

Dependency Chart

A line joining two boxes means the
upper box must be covered before the

lower box.

~_

Chapter 5

1/O streams

Chapter 12
§12.1-
Basic recursion

12.2

~_

Chapter 7
More flow of control

N

Chapter 9

Chapter 8
Classes 2 §9.1-9.3
Array basics
Chapter 9 Chapter 10 Chapter 11
§9.4 Arrays §10.1 Strings §11.1-11.2 Pointers
in classes as arrays and dynamic arrays
Chapt :
Chapter 10 aP e.r 3 §.10 2
§103 Multidimensional
STL strings b /
\\ /
Chapter 15 Chapter 11 §11.3 %
§15.1 Dynamic arrays in
Derived Classes classes; Destructors
Chapter 15 §15.2 Chapter 13
Pointers and virtual Templates

functions

£ §11.3 does not depend on
§10.3 in any essential
way, although it does
briefly mention material
in §10.3. §11.3 does
require §9.4.

Contents

CHAPTER 1

INTRODUCTION TO COMPUTERS AND C++ PROGRAMMING 1

1.2

1.3

Computer Systems 2
Hardware 2

Software 7
High-Level Languages 8
Compilers 9

Self-Test Exercises 11
History Note 12

Programming and Problem-Solving 13

Algorithms 14

Program Design 15

The Software Life Cycle 17
Self-Test Exercises 18

Introduction to C++ 19

Origins of the C++ Language 19

A Sample C++ Program 20

Pitfall—Using the Wrong Slashin\n 24
Programming Tip—Input and Output Syntax 24
Pitfall—Putting a Space before the Include File Name
Layout of a Simple C++ Program 25

Compiling and Running a C++ Program 27
Self-Test Exercises 28

Testing and Debugging 28

Kinds of Program Errors 29
Pitfall—Assuming Your Program Is Correct 30
Self-Test Exercises 30

24

xiv CONTENTS

Chapter Summary 31
Answers to Self-Test Exercises 32
Programming Projects 34

CHAPTER 2
C++ BASsICS

2.'

2.2

23

2.4

37

Variables and Assignments 38

Variables 38

Names: Identifiers 39

Variable Declarations 42

Assignment Statements 44
Pitfall—Uninitialized Variables 46
Programming Tip—Use Meaningful Names 47
Self-Test Exercises 47

Input and Output 48

Output Using cout 48

Escape Sequences 50

Programming Tip—End Each Program with a \n or end1
Formatting for Numbers with a Decimal Point 52
Input Using cin 54

Designing Input and Output 55

Programming Tip—Line Breaks in1/O 56

Self-Test Exercises 56

Data Types and Expressions 57

The Types int and double 57

Other Number Types 59

The Type char 61

The Type bool 62

Type Compatibilities 62

Arithmetic Operators and Expressions 64
Pitfall-Whole Numbers in Division 67
Self-Test Exercises 68

More Assignment Statements 69

Simple Flow of Control 70

A Simple Branching Mechanism 70
Piffalﬂﬂrings of Inequdlities 76

Pitfall—Using = in place of == 76

Compound Statements 78

Self-Test Exercises 79

Simple Loop Mechanisms 80

Increment and Decrement Operators 84
Programming Example—Charge Card Balance 86

52

2.5

CONTENTS

Pitfall—Infinite Loops 87
Self-Test Exercises 89

Program Style 90

Indenting 90
Comments 91
Naming Constants 92
Self-Test Exercises 95

Chapter Summary 95
Answers to Self-Test Exercises 96
Programming Projects 101

CHAPTER 3

PROCEDURAL ABSTRACTION AND FUNCTIONS THAT RETURN A VALUE 105

3.1
3.2

3.3

3.4

3.5

3.6

Top-Down Design 106

Predefined Functions 107
Using Predefined Functions 107

Type Changing Functions 112
Self-Test Exercises 115

Programmer-Defined Functions 116
Function Definitions 116

Alternate Form for Function Prototypes 121
Pitfall—Arguments in the Wrong Order 123
Function Definifion-Syntax Summary 125

More About Placement of Function Definitions 126
Self-Test Exercises 127

Procedural Abstraction 127

The Black Box Analogy 128

Programming Tip—Choosing Formal Parameter Names 130
Case Study—Buying Pizza 131

Programming Tip—Use Pseudocode 138

Self-Test Exercises 138

Local Variables 139

The Small Program Analogy 139

Programming Example—Experimental Pea Patch 142
Global Constants and Global Variables 142

Call-by-Value Formal Parameters Are Local Variables 145
Self-Test Exercises 147

Programming Example—The Factorial Function 148

Overloading Function Names 150
Introduction to Overloading 150

xXv

xvi CONTENTS

Programming Example—Revised Pizza-Buying Program 153
Automatic Type Conversion 154
Self-Test Exercises 158

Chapter Summary 158

Answers to Self-Test Exercises 159

Programming Projects 162

CHAPTER 4
FUNCTIONS FOR ALL SUBTASKS 167

4.1 void-Functions 168

Definitions of vo7d-Functions 168

Programming Example—Convertfing Temperatures from Fahrenheit to
Celsius 171

return-Statements in vo7d-Functions 171

Self-Test Exercises 174

4.2 Call-by-Reference Parameters 176
A First View of Call-by-Reference 176
Call-by-Reference in Detail 179
Programming Example—The swap_values Function 181
Mixed Parameter Lists 184
Programming Tip—What Kind of Parameter to Use 185
Pitfall—Inadvertent Local Variables 187
Self-Test Exercises 189

4.3 Using Procedural Abstraction 190

Functions Calling Functions 190
Preconditions and Postconditions 193

Case Study—Supermarket Pricing 194
Self-Test Exercises 197

4.4 Testing and Debugging Functions 200

Stubs and Drivers 200
Self-Test Exercises 203
Chapter Summary 206
Answers to Self-Test Exercises 207
Programming Projects 210

CHAPTER 5
1/0 STREAMS AS AN INTRODUCTION TO OBJECTS AND CLASSES 215

5.1 Streams and Basic File 1/0 216
Why Use Files for 1/0? 217

