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Pretace

The title “Applied Funcuonal Analysis™ is intended to be short for
“Functional analysis in a Hilbeitspooc and certain of its applications.™ the
applications being drawn mostl+ {100 areas variously referred to as system
optimization or control systems or %&tcins analysis. _

One of*the signs of the times 15 o «iscernible tilt toward application in
mathematics and conversely a greate: level of mathematical sophistication
in the application areas such as economics or system science. both spurred
undoubtedly by the heightening pace of digital computer usage. This book
is an entry into this twilight zone. The aspects of functional analysis trea’ed
here are rapidly becoming essential in the training at the advance eradue:
level of system scientists and/or mathematical cconomisi-,Jhere are i
course now available many excellent treatises on funcifén o inaly
However, the very fact of the comprehensive coverage makes 1oonihe gt of
access to thé application-minded user. Also. the high degree of geinerality
the watermark of mathematical achievement. is often at the expense <0 the
richgg results obtainable in the more highly structured cases comimon in
appfié'ulion\. It is with some of these thoughts in mind that [ have dealt
exclusively with analysis in a Hilbert space and emphasized such speciil
topics as Volterra operators and Hilbert-Schmidt operators: dissipative
compact semigroups; and tactorization theorems for positive definite
operators, to name a few. Many topics in functional analysis per se have
had to be totally shelved or otherwise abridged considerably mostly based
on considerations of significance in application, but also to keep the size
of the volume within reasonable bounds.

Another point is that the abstract theory can be sometimes easier than
the applications. This is true for instance in the case of semigroup theory
where the generation theorems, for example, are far easier than showing

»
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Preface

that a pariicular partial differential equation generates a semigroup. Indeed
a novice 1s bewildered by a seemingly endless variety of approaches to
boundary value problems, even to the notion of what 1s meant by boundary
value. Here I have taken some pains to illustrate by examples how the
abstract theory ielates to problems in partial differential equations without
of course any claim to completeness.

Of the six chapters in the book, three deal specifically with applicaticns
topics. These are Chapter 2 on convex sets and convex programming in a
Hilbert space; Chapter 5 on deterministic control problems and Chapier 6
on stochastic optimization problems. Chapter 6 is unusual in that it exploits
the theory of finitely additive probability measures on a Hilbert space (in
contrast to the more standard Wiener measure on the space of continuous
functions). This chapter also contains some original material.

The remaining chapters (about two thirds of the book) are devoted to
functional analysis and semigroups within a Hilbert space framework. The
basic properties of Hilbert spaces and some of the fundamental theorems
central to what follows are in the beginning chapter. The background so
buiit up is syfficient to consider applications to convex programming
problems in the second chapter. It is possible to proceed directly from
Chapter 1 to Chapter 3 featuring the theory of linear operators in a Hilbert
space. L -distributional derivatives are studied as examples of unbeunded
operators and associated notion of Sobolev spaces. Operators over separable
Hiibert spaces receive special attention as well as L, spaces over Hilbert
spaces. The final section in Chapter 3 is devoted 1o nonlinear operators. or
more accurately, polynomials and analytic functions. We go on to semii-
group theory in Chapter 5. again emphasizing the mcre specialized cases
such as compact semigroups aiid Hilbert-Schmidt semigroups. Semigroup
theory inma Hilbert space strikes the right balance for our purposes between
the too geheral and the too particular: for example, it provides a general
encugh framework for optimization problems mvelving partial differential
equations without getting iost in the detaiis of the particular equations. The
concepts of controllability and observability important in system theory
are examined in the semigroup theorctic seting. An example illustrates the
application to nenhomogeneous boundary valuce problems. A final section
deals with a special class of evolution equations thai arise as perturbations
the semigroup efuation.

(he book s a revised anu cnlarged version of the authoi's Mntroduction
to Optmization Theory m a Hilbert Space. No, 42 in the Springer-Verlag
Lociire Series on Leonomics and Mathenatical Systems Theory, and has
been used i graduale courses given in the Depaitment of Mathematics
and the Peparinent of Svstem Science. The prerequisites are the standard
gradunts courses in repl and complex vartabies and concommitant material

such as Touner transforms: yalerial on funcuon spaces usually included
i real weoedysis weats woirld be helpful back ground since the bare deiinitions

civen here o introduciory sections mas be inadeguate for a firm grasp
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Similariy in the applications chapters, some familiarity with control prob-
lems in finite dimensions would be heipful.

Many students, past and present, have helped in improving the presenta-
tion: ID. Washburn, Claude Benchimol and Frank Tung, in particular. Dr.
J. Mersky helped with proofreading. Dr. J. Ruzicka rendered much needed
assistance throughout the various stages of the manuscript.

I am indebted to Regina Safdie for her endurance typing and to W,
Kaufmann-Buehler for interest and encouragement. Grateful acknowl-
edgement 1s made of the financial support in part under a research grant
from the Applied Mathematics Division, AFCSR-USAF, monitored by
Colonel W. Rabe.
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Basic Properties
of Hilbert Spaces

1.0 Introduction

This is an introduétory chapter in which we study the basic properties of
Hilbert spaces, indispensable for an understanding of the sequel. Although it
is fairly complete in itself, this chapter is necessarily brief in many areas and
the reader would find it helpful to have had an elementary intfoduction to
linear spaces, and Hilbert spaces in particular, such as one finds in the stand-
ard texts on real analysis. P

We begin with the basic definitions in Section 1.1.' Some of the standard
examples of Hilbert spaces are given in Section 1.2, while the more sophis-
ticated ways (of importance in applications) in which Hilbert spaces are
made up of Hilbert spaces are indicated in Section 1.3, including in particular
tensor products of Hilbert spaces. We discuss next the simplest optimization
problem in a Hilbert space-—namely, projections on convex sets—in Section
1.4, and go on to the concepts of orthogonality and orthonormal bases in
Section 1.5. After a brief discussion of continuous linear functionals in
Section 1.6, we prove the basic Riesz representation theorem in Section 1.7.
Section 1.8 contains some of the main theorems. We study weak convergence
and prove the weak compactness property of bounded sets characteristic of
Hilbert spaces, the Mazur theorem on convex sets, as well as the more
general uniform boundedness principle. Section 1.9 treats a rather specialized
topic: the generalized curves of L. C. Young in the comntext of nonlinear
functionals on a Hilbert space, illustrating its importance in contrel theory
(chattering controls). We close in Section 1.10 with a statement of the Hahn-
Banach theorem as needed in Chapter 2.

Much of the material is standard and can be found in many places: notably
[11, [53, [25], [301, [35], [39]. A useful reference for r=al analysis is [33]. For -
the specialized material of Section 1.10, the basic reference is [40].



Chapter | Basic Properties of Hilbert Spaces

1.1 Basic Definitions

Def. 1.1.1. A linear space is a nonvoid set & for which two operations called
addition (denoted +) and scalar multiplication (-) are defined. Addition is
commutative and associative, making & into a commutative group under
addition. Multiplication is by scalars (either from the complex field, in which
case we have a complex linear space, or the real number field, in which case
we have a real linear space). Multiplication is associative, and distributive
with respect to (+) as well as addition of scalars.

In this book we shall deal almost exclusively with function spaces; that is,
linear spaces of functions—in which case the operations will be natural. We
shall. as a rule. use the letters &, #, s#. #, and % to denote linear spaces:
X, 1, z to denote elements of J#'; f, g, h to denote elements in a function space
where f(-), g(-), h(-) are the functions, and =, f§, 7 to denote eleménts in the
scalar field.

Def. 1.1.2. A set of elements in & is linearly dependent if the zero element can
be expressed as a finite linear combination of elements in the set; i.e.,

n
0= Z A Xy»
1

where x are elements in the set and not all the scalar coefficients ay are zero.
Otherwise the set is linearly independent.

Def. 1.1.3. A linear subspace, or simply a subspace, of the linear space & is a
subset which is itself a linear space under the same operations.

Def. 1.1.4. A linear functional on & is a function defined on & with range in the
scalar field such that if f (-) denotes the functional
flox + By) = of (x) + Bf(y); x.ved: x B scalars.

Def. 1.1.5. The Cartesian product §, x &, of two linear spaces &,, &, (over
the same scalar field) is the set of all pairs (x, v),x€&,. y€&,.

Def. 1.1.6. A bilinear functional on & is a functional defined on the Cartesian
product space & x &, with range in the scalar field such that, denoting the
Sfunctional by{f(x, y), we have

(i) f(x,y) isalinear functional on & for fixed y.
(i) f(x,y) = f(y, x), the bar denoting conjugate complex.

We now come to definitions closer to our needs.

(]



Section 1.1: Basic Definitions

Def. 1.1.7. An inner product on a linear space is a bilinear functional f(x, y)
which satisfies the additional condition

(i) f(x,x)=>0
an equality holds if and only if x is zero.

An inner product will usually be denoted [x, y], to be distinguished from
the same notation to denote a closed interval, but the confusion should be
minimal.

ExampLE 1.1.1. Let C[a, b] denote the space of continuous functions defined
on the closed finite interval [a, b] of the real line. Let C*®'[a, b] denote the
space of k-times continuously differentiable functions on [a, b]. An inner
product of some importance on C*[a, b] is

k b o
[f.gl= Y | r9%g) dt, (1.1.1)
Jj=0 va

where f4(-) denotes the jth derivative of f(-).
An example of a different kind of inner product on ('{a, b] is provided by

b
[ﬁg]=f f§95&—“jﬁwrm“: (1.12)

n(t

The verification that (1.1.1) is an inner product is immediate,-and for (1.1.2),
only condition (iii) requires a proof. But this follows from the fact that we can
express (1.1.2) as

o= | ( f "1 dr)( f "o .n) by

so that [f, /] > 0, and if equality holds we must have
b
féWﬂnm=Q l<i< 4l

However, the integral defines an analytic function of 4, and hence must be
zero for all 4, implying in turn that (the continuous function) f(-) must be
identically zero.

EXAMPLE 1.1.2. As an example of a bilinear functional which is not an inner
product, define on C[a, b]

b b
[ﬂﬂ=ffﬂmmwm (1.1.3)

Obviously there are many nonzero functions in C[a, b] such that

b
ffmm

2

Lf. /1= = )




Chapter 1: Basic Properties of Hilbert Spaces

A fundamenta! property of inner producte is the Cauchy--Buniakowski-
Schwarz incquality (referred to hereafter as the Schwarz inequalityi:

e y112 < [xx1 Dnyl (1.1.4)
This can be deduced as follows: For ary A we note that 0 < {x + Ay. x + Ay}
=[x, 27 + [1*y, y] + A[x, y] + A[x, y]. The inequality is obviously satis-
fied if  is zero. Hence we need only consider the case when y is nonzero.
Heace we may choose 4 = —[x, y]/[y, y], and this choice of 4 yields

0 —<— [X, .)C] - |[x= .v:”Z/[y’ Yl

which is the inequality sought. Further, we see from this that equality holds
in (1.1.4) if and only if one element is a scalar multiple of the other. (This
simple observation provides the basis for the theory of matched filters in
communication (detection) theory; see [3].)

Def. 1.1.8. 4 norm on a linear space is a nonnegative ﬁuictional f () such that

fx)=0 ifandonlyif x=0
Slax) = |af f(x). i
fx+y) < f(x)+ f(y)  (triangle inequality).

A norm is usually denoted ||-||.

Def. 1.1.9. 4 normed linear space is a linear space with the topology induced
by the norm defined on it: neighborhoods of any point x, are the spheres
Ix — xoll <rr>0.

Def. 1.1.10. An inner product space (also called a p;e-HiIbert space) is a
normed linear space with the norm defined by | x| = \/[x, x]. Implicit in
this definition is of course the verification that \/[x, x] yields a norm. The
only nontrivial part in this verification is the triangle inequality, which is an
easy consequence of the Schwarz inequality.

Def. 1.1.11. In a normed linear space, a sequence x, is said to be a convergent
sequence if there is an element x in the space such that ||x, — x|| — O, and we
say that x, converges to x.

In 2 normed linear space, if x is a limit point of a set, then we can find a
sequence {x,} in the set such that x, converges to x, and of course conversely.

Def. 1.1.12. A sequence x, in a normed linear space is said to be a Cauchy
sequence z’f,’given e > 0,we can find an integer N(g), such that {|x, — x|l <&
for all n,m > Ng).

Whereas every convergent sequence is a Cauchy sequence, the reverse is
not necessarily true in a normed linear space. For example it is well known

4



Section 1.2: Examples of Hilbert Spaces

(see [33], for instance) that in C'}0, 17 under the norm defined by (1.1) with
k = 0, it is possible to find a Cauchy sequence of functions which does not-
converge (o a continuous function in C{0, i].

Def. 1.1.13. A normed l'm ar space in Mhifh zl’t’l'y Cauchy sequence is a con-
vergent sequence is called ¢ Banach s

Def. 1.1.14. An inner product (normed lincar) space in which every Cauchy
sequence is a convergent sequence is said to be complete.

- A complete inner product space is called a Hilbert spacs.
We note that every inner product space can be completed. That is to say,
denoting the inner product space by &, we can find a Hxlbert space ¥ such
that:

(i) There is a function L() defined on & with range in J# such that L() is
linear and one-to-one:

Lox + By) = al(x) + Bily)
L(x) =0 implies x=0

(if) L(-) is an inner product-preserving map:
(L) Lile = [x, ys

where the subscripts denote the space in which the mner product is
taken, and
(i) The closure of the set L(&) is equal to #

We shall indicate briefly how the existence of such a Hilbert space can be
established [see, e.g., [39] for details]. Let us say that two Cauchy sequences
{x,}, {v.} In & are equivalent if the difference sequence {x, — y,} converges
to zero. We consider the linear space of {equivalence classes) of Cauchy
sequences in & made into an inner product space under the inner-product
[{x.}, {v.}] = lim, [x,, ¥,]. The important point is that it may be verified
that this space is actually complete, yielding the Hilbert space sought. The
~map L(-) is defined by L(x) = the (equivalence class containing the) Cauchy
sequence, defined-by x,, = x for every n. We call the Hilbert space so obtained
the completion of &, “identifying” each x in & with the corresponding Cauchy
sequence (L(x)) in 5#. Note that the procedure is analogous to the way in
which we define real numbérs as Cauchy sequences of rational numbers.

12 Examples of Hilbert Spaces

Perhaps the simplest example of a function space which is a Hilbert space
is the space of real-(complex-) valued functions f(?), Lebesgue measurable
and square integrable on the interval [a, b], —o0 < a < b < + o0, with
inner product defined by [ f, g1 = [% f(t)g(t) dt. That the inner product space

5



Chapter |: Basic Properties of Hilbert Spaces

so defined is complete is a standard result in analysis; see, for example [33].
We usually denote the space L,(a, b). For many purposes, particularly in
dealing with partial differential equations, we need a slightly more general
form of this space. Thus let Z denote an open set of the Euclidean space E,
of dimension n. By L,(2)? we shall mean the space of all g-by-p martix
functions Lebesgue measurable on 2, such that [, Tr. f(s)f(s)* dm < o,
(where m denotes Lebesgue measure, * denotes conjugate transpose, and Tr.
indicates the “trace”) under the inner product [ f, g] = [4 Tr. f(s)g(s)* dm.
This is a Hilbert space.

As may be surmised immediately, the restriction to Lebesgue measure is
not necessary. For example, in the theory of stochastic processes we shall
often need to work with the following generic Hilbert space, which we shall
denote L,(Q, B, p). This is the space of g-by-p matrix functions f(-) defined on
the abstract set €, measurable with respect to a sigma-algebra B of sets in Q,
such that [o Tr. f(s)f(s)* du < o, where u is a countably additive (o-
finite, generally-finite for the needs of probability theory) measure defined on
B, with inner product defined by [ f, g] = [q Tr. f(s)g(s)* dp.

Problem 1.2.1. Let R be a self adjoint nonnegative definite (n x n) matrix. Con-
sider the class of n x 1 functions u(*), Lebesgue measurable on (0, 1], and such that

1
flul> = f [R u(e), u(t)] dr < 0.
0

Can this be made into a Hilbert space with norm ||u|?

1.3 Hilbert Spaces from Hilbert Spaces

Very often we need to study Hilbert spaces derived from a given Hilbert
space or, more generally, a collection of Hilbert spaces. The simplest such
example is the Cartesian product. ‘

. 4
Def. 1.3.1. The Cartesian product of two Hilbert spaces # ,, # , is the linear
space of all pairs (x4, X;), X1 € # 1, x5 € # 5, under the operations

(x1, X2) + (y1, y2) = (x; + X2, ¥y + y32)
Xy, X;) = (x4, ax,),

and endowed with the inner product [(x,,X,), (y1,y2)] =[xy, ¥:1]+
[x2, y2]

The Cartesian product space will be denoted #, x #’,, and is readily
verified to be a Hilbert space. The definition can clearly be extended to a
finite number of Hilbert spaces, #;,i = 1, ..., n. When the Hilbert spaces
are the same we sometimes use the notation #" for # x # x H --- K n-
times. Note that L,(2)% can be identified as the gp Cartesian product of L,(Z).
The Cartesian product of a sequence {# ,} of Hilbert spaces may also be

6



Section 1.3: Hilbert Spaces from Hilbert Spaces

defined in analogous manner. Thus we first consider the linear spaces of
sequences {x;}, x; € #; with the vector space operations defined in obvious
manner.

If x denotes the sequence [x;}, and vy similarly the sequence {y;}, then we
define x + y as the sequence {x; + y;} and ax = the sequence {ax;}. The
Cartesian product | [/2, # is the subspace of the linear space of sequences
{x;} such that

Y Ixill < x
1
endowed with the inner product
[x, ¥] = 2 [xi vl
1

It may readily be verified that the space is complete. We note that the space
[, of square summable sequences may be defined in this way, taking the space
of real (complex) numbers as the basic Hilbert space.

Somewhat more involved 1s the notion of the rensor product of Hilbert
spaces. To explain this, let #';, #, be two Hilbert spaces. We first consider
the algebraic tensor product considering the spaces merely as linear spaces.
This is the linear space of all formal finite sums

z= ) (X;® ), X, €H, y, €N,

i

with the following expressions identified:

Ux @ y) =(x @ ay) = (ax @ y)
((xy + x)®y) =(x; ®y) +(x; @)
(x®(y +y2) = (x® y;) + (XD yy)

We endow this space with the inner product

ny n2 ny na

[Z (x; ® yi), Z (Sj ® fj)] = Z Z VS 5,‘] [vi. fj]-

i=1 i=1 i=1j=1

(The indices n,, n, may be taken to be same without loss of generality by
adding zero entries.) It needs to be verified that this is indeed an inner prod-
uct. The bilinearity being obvious, let us proceed to the consequence of

[Z ‘xl' ® yi)v Z (xj ® _V},‘)] = 0,
i 7 7

Letting r;; = [x;, x;], m;; = [y;, y;], we sce that this is the same as

n n
1 =0

i=1 j=1

STUUT



